Mathematics Additional Question Bank
 Mathematics 1, 2 and 3
 Advanced Higher

7856

Mathematics Additional Question Bank Mathematics 1, 2 and 3

Advanced Higher

Support Materials

CONTENTS

Section 1	Introduction
Section 2	Contents reference list
Section 3	Question analysis
Section 4	Question Bank

MATHEMATICS Additional Question Bank Advanced Higher Mathematics Units 1,2 and 3

1. INTRODUCTION

1.1 Background

The National Course in Advanced Higher Mathematics consists of two mandatory units, Mathematics $1(\mathrm{AH})$ and Mathematics $2(\mathrm{AH})$, followed by one of four optional units Mathematics 3(AH), Statistics 1(AH), Mechanics 1(AH) and Numerical Analysis 1(AH).

The National Course in Advanced Higher Applied Mathematics consists of a core of two units from Statistics 1(AH) and 2(AH), Mechanics 1(AH) and 2(AH) and Numerical Analysis 1(AH) and 2(AH), followed by one of four optional units Mathematics 1(AH), Statistics 1(AH), Mechanics 1(AH) and Numerical Analysis $1(\mathrm{AH})$. The optional unit chosen must not be a repeat of a unit taken by the candidate elsewhere in a Mathematics (AH) or Applied Mathematics (AH) course.

This pack contains a bank of additional questions for the three Mathematics Units, Mathematics 1(AH), Mathematics 2(AH) and Mathematics 3(AH). Three other banks of questions will be issued providing questions for Statistics 1 and 2(AH), Mechanics 1 and 2(AH) and Numerical Analysis 1 and 2(AH).

For the most part, the content of the nine units available at Advanced Higher correlates highly with the content of the five Mathematics papers which were offered for the Certificate of Sixth Year Studies. The two main exceptions are in Statistics 2(AH) where most of the content is new and in Mathematics 2 and $3(\mathrm{AH})$ where some content from CSYS prior to 1992 is now reinstated.

The source of most of the questions in the banks is past CSYS Mathematics examination papers. Although these questions are in the public domain, they have the significant benefit of having undergone the question paper moderation procedures of the Scottish Qualifications Authority (SQA), (formerly the Scottish Examination Board), and have been scrutinised for clarity of language and mathematical accuracy. In addition, the difficulty levels attached to the questions are based on actual examination performance by candidates and the experience of examiners.

1.2 Structure and purpose

The structure of the banks is such that questions from future National Qualifications examinations for Advanced Higher Mathematics, Advanced Higher Applied Mathematics and from other sources available to users can be categorised similarly and added to the banks.

The purpose of the banks is to prepare students for course assessment and to generate evidence of attainment beyond the minimum competence necessary to pass the unit assessments for the component units of the chosen course. Centres are required to submit estimates of the bands candidates are likely to attain in the external course assessment and to retain the evidence of attainment on which estimates are based for use in the event of appeals. Using questions from the banks to obtain an assessment of
the candidate's own unaided work should provide quality evidence of an estimate band. Centres may, of course, prefer to devise their own assessment materials, in which case modifying questions from the banks or creating new questions based on contexts used in questions in the banks may be helpful.

1.3 Quality of evidence

For assessment evidence in the form of prelim examinations or any other form of evidence to be fit for the purposes of estimates and appeals it is important that it covers as much of the course as possible. In Mathematics, evidence will normally be produced under supervision to ensure that it is the candidate's own unaided work.

1.4 Bank codes

In the following sections of this Additional Question Bank, codes are used for ease of reference.

- Mathematics $1(\mathrm{AH})$, Mathematics $2(\mathrm{AH})$ and Mathematics $3(\mathrm{AH})$ are referred to as Unit 1, Unit 2, and Unit 3 respectively.
- A 3-figure code has been applied to the items of course content as listed in the National Course Specifications for Advanced Higher Mathematics and Advanced Higher Applied Mathematics. For example, 2.1.10 is the reference to the tenth item of content in the first outcome of unit 2.
- A code 0.1 has been used to classify content which falls into the category of course grade descriptions.

Section 2 contains the full list of coded content for Mathematics 1, 2, and 3(AH) in an abbreviated form. The document, SQA Mathematics Advanced Higher:National Course Specification should be consulted for a full statement of course content and comment and course grade descriptions.

1.5 Additional questions

Section 3 of the Bank contains an analysis of the questions in grid form. The headings and abbreviations are explained below.

Section 4 lists each of the questions with, as a guide to marking, a simplified version of the actual marking instructions used in the examinations. Only one method of marking is illustrated and it should be noted that, in many instances, alternative methods are equally valid.

1.6 Important limitations on use of the Bank

Since national past examination papers are in the public domain, it is important, for reliability, that internal course assessments are constructed with questions from a wide spread of years.

Please note that the questions drawn from the past CSYS papers prior to 1992 have not been supplied in this pack. They will be made available in the near future and are to be inserted into the appropriate sections in this pack.

Section 2

Contents reference list

Content List
 Mathematics 1 (AH)

1.1 Algebra

1.1.1 know and use the notation $n!,{ }^{n} C_{r}$ and $\binom{n}{r}$
1.1.2 know the results $\binom{n}{r}=\binom{n}{n-r}$ and $\binom{n}{r-1}+\binom{n}{r}=\binom{n+1}{r}$
1.1.3 know Pascal's triangle Pascal's triangle should be extended up to $n=7$.
1.1.4 know and use the binomial theorem
$(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$, for $r, n \in \mathbf{N}$
e.g. expand ($2 u-3 v)^{5}[\mathrm{~A} / \mathrm{B}]$
1.1.5 evaluate specific terms in a binomial expansion
1.1.6 express a proper rational function as a sum of partial fractions (denominator of degree at most 3 and easily factorised).
include cases where an improper rational function is reduced to a polynomial and a proper rational function by division or otherwise. [A/B]

1.2 Differentiation

1.2.1 know the meaning of the terms limit, derivative, differentiable at a point, differentiable on an interval, derived function, second derivative
1.2.2 use the notation: $f^{\prime}(x), f^{\prime \prime}(x)$, $\frac{d y}{d x} \cdot \frac{d^{2} y}{d x^{2}}$
1.2.3 recall the derivatives of x^{α} (α rational), $\sin x$ and $\cos x$
1.2.4 know and use the rules for differentiating linear sums, products, quotients and composition of functions: $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x) ;(k f(x))^{\prime}=k f^{\prime}(x)$, where k is a constant; the chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$; the product rule: $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$; the quotient rule: $\left(\frac{f(x)}{g(x)}\right)=\frac{f(x) g(x)-f(x))^{\prime}(x)}{g(x)^{2}}$
differentiate given functions which require more than one application of one or more of the chain rule, product rule and the quotient rule. [A/B]
1.2.5 know

- the derivative of $\tan x$
- the definitions and derivatives of $\sec x, \operatorname{cosec} x$ and $\cot x$
- the derivatives of $e^{x}(\exp x)$ and $\ln x$
1.2.6 know the definition $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
1.2.7 know the definition of higher derivatives $f^{n}(n), \frac{d^{m} y}{d x^{n}}$
1.2.8 apply differentiation to:
a) rectilinear motion
b) extrema of functions: the maximum and minimum values of a continuous function f defined on a closed interval $[a, b]$ can occur at stationary points, end points or points where f^{f} is not defined. [A/B] c) optimisation problems

1.3 Integration

1.3.1 know the meaning of the terms integrate, integrable, integral, indefinite integral, definite integral and constant of integration
1.3.2 recall standard integrals of $x^{a}(\alpha \in \mathbf{Q}, \alpha \neq-1), \sin x$ and $\cos x$ and know the following
$\int(a f(x)+b g(x)) d x=a \int f(x) d x+b \int g(x) d x, a, b \in \mathbf{R}$.
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x, a<c<b$
$\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x, b \neq a$
$\int_{a}^{b} f(x) d x=F(b)-F(a)$, where $F^{\prime}(x)=f(x)$
1.3.3 know the integrals of $e^{x}, x^{-1}, \sec ^{2} x$.
1.3.4 integrate by substitution: expressions requiring a simple substitution
candidates are expected to integrate simple functions on sight.
expressions where the substitution will be given
the following special cases of substitution $\int f(a x+b) d x$ $\int \frac{f^{\prime}(x)}{f(x)} d x$
1.3.5 use an elementary treatment of the integral as a limit using rectangles
1.3.6 apply integration to the evaluation of areas including integration with respect to y. Other applications may include (i) volumes of simple solids of revolution (disc/washer method) (ii) speed/time graph. [A/B]

1.4 Properties of functions

1.4.1 know the meaning of the terms function, domain, range, inverse function, critical point, stationary point, point of inflexion, concavity, local maxima and minima, global maxima and minima, continuous, discontinuous, asymptote
1.4.2 determine the domain and the range of a function
1.4.3 use the derivative tests for locating and identifying stationary points i.e. concavity; a necessary and sufficient condition for a point of inflexion is a change in concavity.
1.4.4 sketch the graphs of $\sin x, \cos x, \tan x, e^{x}, \ln x$ and their inverse functions, simple polynomial functions
1.4.5 know and use the relationship between the graph of $y=f(x)$ and the graphs of $y=k f(x), y=f(x)+k$, $y=f(x+k), y=f(k x)$, where k is a constant
1.4.6 know and use the relationship between the graph of $y=f(x)$ and the graphs of $y=|f(x)|, y=f^{-1}(x)$
1.4.7 given the graph of a function f, sketch the graph of a related function
1.4.8 determine whether a function is even or odd or neither and symmetrical and use these properties in graph sketching
1.4.9 sketch graphs of real rational functions using available information, derived from calculus and/or algebraic arguments, on zeros, asymptotes (vertical and nonvertical), critical points, symmetry.

1.5 Systems of linear equations

1.5.1 use the introduction of matrix ideas to organise a system of linear equations
1.5.2 know the meaning of the terms matrix, element, row, column, order of a matrix, augmented matrix
1.5.3 use elementary row operations (EROs)
reduce to upper triangular form using EROs
1.5.4 solve a 3×3 system of linear equations using Gaussian elimination on an augmented matrix
1.5.5 find the solution of a system of linear equations $A x=b$, where A is a square matrix, include cases of unique solution, no solution (inconsistency) and an infinite family of solutions. [A/B]
1.5.6 know the meaning of the term ill-conditioned [A/B]
1.5.7 compare the solutions of related systems of two equations in two unknowns and recognise illconditioning [A / B]

Mathematics 2 (AH)

2.1 Further differentiation

2.1.1 know the derivatives of $\sin ^{-1} x, \cos ^{-1}, \tan ^{-1} x$
2.1.2 differentiate any inverse function using the technique:
$y=f^{-1}(x) \Rightarrow f(y)=x \Rightarrow\left(f^{-1}(x)\right)^{\prime} f^{\prime}(y)=1$, etc., and know the corresponding result $\frac{d y}{d x}=\frac{1}{d x / d y}$
2.1.3 understand how an equation $f(x, y)=0$ defines y implicitly as one (or more) function(s) of x
2.1.4 use implicit differentiation to find first and second derivatives [A / B]
2.1.5 use logarithmic differentiation, recognising when it is appropriate in extended products and quotients and indices involving the variable [A / B]
2.1.6 understand how a function can be defined parametrically
2.1.7 understand simple applications of parametrically defined functions e.g. $x^{2}+y^{2}=r^{2}, x=r \cos \theta, y=r \sin \theta$
2.1.8 use parametric differentiation to find first and second derivatives [\mathbf{A} / \mathbf{B}], and apply to motion in a plane
2.1.9 apply differentiation to related rates in problems where the functional relationship is given explicitly or implicitly
2.1.10 solve practical related rates by first establishing a functional relationship between appropriate variables [A / B]

2.2 Further integration

2.2.1 know the integrals of $\frac{1}{\sqrt{1-x^{2}}}, \frac{1}{1+x^{2}}$; use the substitution $x=a t$ to integrate functions of the form $\frac{1}{\sqrt{a^{2}-x^{2}}}, \frac{1}{a^{2}+x^{2}}$
integrate rational functions, both proper and improper, by means of partial fractions; the degree of the denominator being $\leqslant 3$; the denominator may include:
(i) two separate or repeated linear factors
(ii) three linear factors [A / B]
(iii) a linear factor and an irreducible quadratic factor of the form $x^{2}+a^{2}[A / B]$
2.2.2 integrate by parts with one application
2.2.3 integrate by parts involving repeated applications [A/B]
2.2.4 know the definition of a differential equation and the meaning of the terms linear, order, general solution, arbitrary constants, particular solution, initial condition
2.2.5 solve first order differential equations (variables separable)
2.2.6 formulate a simple statement involving rate of change as a simple separable first order differential equation, including the finding of a curve in the plane, given the equation of the tangent at (x, y), which passes through a given point
2.2.7 know the laws of growth and decay: applications in practical contexts

2.3 Complex numbers

2.3.1 know the definition of i as a solution of $x^{2}+1=0$, so that $i=\sqrt{-1}$
2.3.2 know the definition of the set of complex numbers as $C=\{a+i b: a, b \in \mathbf{R}\}$
2.3.3 know the definition of real and imaginary parts
2.3.4 know the terms complex plane, Argand diagram
2.3.5 plot complex numbers as points in the complex plane
2.3.6 perform algebraic operations on complex numbers: equality (equating real and imaginary parts), addition, subtraction, multiplication and division
2.3.7 evaluate the modulus, argument and conjugate of complex numbers
2.3.8 convert between Cartesian and polar form
2.3.9 know the fundamental theorem of algebra and the conjugate roots property
2.3.10 factorise polynomials with real coefficients
2.3.11 solve simple equations involving a complex variable by equating real and imaginary parts
2.3.12 interpret geometrically certain equations or inequalities in the complex plane e.g. $|z|=1 ;|z-a|=b$; $|z-1|=|z-i| ;|z-a|>b$
2.3.13 know and use de Moivre's theorem with positive integer indices and fractional indices [A/B]
2.3.14 apply de Moivre's theorem to multiple angle trigonometric formulae [A/B]
2.3.15 apply de Moivre's theorem to find nth roots of unity [A/B]
2.4 Sequences and series
2.4.1 know the meaning of the terms infinite sequence, infinite series, nth term, sum to n terms (partial sum), limit, sum to infinity (limit to infinity of the sequence of partial sums), common difference, arithmetic sequence, common ratio, geometric sequence, recurrence relation
2.4.2 know and use the formulae $u_{n}=a+(n-1) d$ and $S_{n}=\frac{1}{2} n[2 a+(n-1) d]$ for the nth term and the sum to n terms of an arithmetic series, respectively
2.4.3 know and use the formulae $u_{n} a r^{n-1}$ and $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$, $r \neq 1$, for the nth term and the sum to n terms of a geometric series, respectively
2.4.4 know and use the condition on r for the sum to infinity to exist and the formula $S_{\infty}=\frac{a}{1-r}$ for the sum to infinity of a geometric series where $|r|<1$
2.4.5 expand $\frac{1}{1-r}$ as a geometric series and extend to $\frac{1}{a+b}[A / B]$
2.4.6 know the sequence $\left(1+\frac{1}{n}\right)^{n}$ and its limit
2.4.7 know and use the \sum notation
2.4.8 know the formula $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$ and apply it to simple sums e.g. $\sum_{r=1}^{n}(a r+b)=a \sum_{r=1}^{n} r+\sum_{r=1}^{n} b$
2.5 Elementary number theory and methods of proof
2.5.1 understand the nature of mathematical proof
2.5.2 understand and make use of the notations \Rightarrow, \Leftarrow and \Leftrightarrow know the corresponding terminology implies, implied by, equivalence
2.5.3 know the terms natural number, prime number, rational number, irrational number
2.5.4 know and use the fundamental theorem of arithmetic
2.5.5 disprove a conjecture by providing a counter-example
2.5.6 use proof by contradiction in simple examples
2.5.7 use proof by mathematical induction in simple examples
2.5.8 prove the following results $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$;
the binomial theorem for positive integers; de Moivre's theorem for positive integers.

3.1 Vectors

3.1.1 know the meaning of the terms position vector, unit vector, scalar triple product, vector product, components, direction ratios/cosines
3.1.2 calculate scalar and vector products in three dimensions
3.1.3 know that $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
3.1.4 find $\mathbf{a} \times \mathbf{b}$ and $\mathbf{a} . \mathbf{b} \times \mathbf{c}$ in component form
3.1.5 know the equation of a line in vector form, parametric and symmetric form
3.1.6 know the equation of a plane in vector form, parametric and symmetric form, Cartesian form
3.1.7 find the equations of lines and planes given suitable defining information
3.1.8 find the angles between two lines, two planes [A/B], and between a line and a plane
3.1.9 find the intersection of two lines, a line and a plane and two or three planes

3.2 Matrix algebra

3.2.1 know the meaning of the terms matrix, element, row, column, order, identity matrix, inverse, determinant, singular, non-singular, transpose
3.2.2 perform matrix operations: addition, subtraction, multiplication by a scalar, multiplication, establish equality of matrices
3.2.3 know the properties of the operations: $A+B=B+A$; $A B \neq B A$ in general; $(A B) C=A(B C)$; $A(B+C)=A B+A C ;\left(A^{\prime}\right)^{\prime}=A ;$ $(A+B)^{\prime}=A^{\prime}+B^{\prime} ;(A B)^{\prime}=B^{\prime} A^{\prime} ;(A B)^{-1}=B^{-1} A^{-1}$; $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$
3.2.4 calculate the determinant of 2×2 and 3×3 matrices
3.2.5 know the relationship of the determinant to invertability
3.2.6 find the inverse of a 2×2 matrix
3.2.7 find the inverse, where it exists, of a 3×3 matrix by elementary row operations
3.2.8 know the role of the inverse matrix in solving linear systems
3.2.9 use 2×2 matrices to represent geometrical transformations in the (x, y) plane

3.3 Further sequences and series

3.3.1 know the term power series
3.3.2 understand and use the Maclaurin series:
$f(x)=\sum_{r=0}^{\infty} \frac{x^{r}}{r!} f^{(r)}(0)$
3.3.3 find the Maclaurin series of simple functions: $e^{x}, \sin x$, $\cos x, \tan ^{-1} x,(1+x)^{a}, \ln (1+x)$, knowing their range of validity
3.3.4 find the Maclaurin expansions for simple composites, such as $e^{2 x}$
3.3.5 use the Maclaurin series expansion to find power series for simple functions to a stated number of terms
3.3.6 use iterative schemes of the form $x_{n+1}=g\left(x_{n}\right)$, $n=0,1,2, \ldots$ to solve equations where $x=g(x)$ is a rearrangement of the original equation
3.3.7 use graphical techniques to locate an approximate solution x_{0}
3.3.8 know the condition for convergence of the sequence $\left\{x_{n}\right\}$ given by $x_{n+1}=g\left(x_{n}\right), n=0,1,2, \ldots$ and the meaning of the terms first and second order of convergence

3.4 Further ordinary differential equations

3.4.1 solve first order linear differential equations using the integrating factor method
3.4.2 find general solutions and solve initial value problems
3.4.3 know the meaning of the terms: second order linear differential equation with constant coefficients, homogeneous, non-homogeneous, auxiliary equation, complementary function and particular integral
3.4.4 solve second order homogeneous ordinary differential equations with constant coefficients $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$
3.4.5 find the general solution in the three cases where the roots of the auxiliary equation:
(i) are real and distinct
(ii) coincide (are equal) [A/B]
(iii) are complex conjugates [A/B]
3.4.6 solve initial value problems
3.4.7 solve second order non-homogeneous ordinary differential equations with constant coefficients
$a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$
using the auxiliary equation and particular integral method [A/B]
3.5 Further number theory and further methods of proof
3.5.1 know the terms necessary condition, sufficient condition, if and only if, converse, negation, contrapositive
3.5.2 use further methods of mathematical proof: some simple examples involving the natural numbers
3.5.3 direct methods of proof: sums of certain series and other straightforward results
3.5.4 further proof by contradiction
3.5.5 proof using the contrapositive
3.5.6 further proof by mathematical induction prove the following result $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$; $n \in \mathbf{N}$
3.5.7 know the result $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$
3.5.8 apply the above results and the one for $\sum_{r=1}^{n} r$ to prove by direct methods results concerning other sums
3.5.9 know the division algorithm and proof
3.5.10 use Euclid's algorithm to find the greatest common divisor (g.c.d.) of two positive integers
3.5.11 know how to express the g.c.d. as a linear combination of the two integers [A/B]
3.5.12 use the division algorithm to write integers in terms of bases other than 10 [A / B]

Section 3

Question analysis

Main unit \& Outcome	Part	Marks	Marks distribution		Content Reference:		Source	Page
			C	A/B	Main	Additional		
2.1	(a)	2	2		2.1.1	1.2.4	1996 SY1 Q1	1
1.2	(b)	3	3		1.2.4	1.2.5		
2.3		4	4		2.3	2.3.5	1996 SY1 Q2	2
1.5		5	5		1.5.4		1996 SY1 Q5	3
2.4		2	2		2.4.2			4
2.4		3	3		2.4.2		1996 SY1 Q7	
1.3	(a)	4	4		1.3.4		1996 SY1 Q8	5
2.2	(b)	3	3		2.2.2			
2.3		5	5		2.3.11	2.3.5	1996 SY1 Q10	6
1.2		5	5		1.2.8		1996 SY1 Q12	7
2.2	(a)	4	4		2.2.5		1996 SY1 Q13	8
2.2	(b)	2	2		2.2.5			
2.2	(c)	3		3	2.2.5			
1.3	(a)(i)	2	2		1.3.2		1996 SY1 Q14	9
1.3	(a)(ii)	2	2		1.3.2			
1.1	(a)	3	3				1996 SY1 Q15	10
1.1	(b)	1	1					
2.2	(c)	7		7	2.2.1			
1.2	(a)	3	3		1.2.8		1996 SY1 Q16	11
1.2	(b)(i)	4	4		1.2.8			
1.2	(b)(ii)	4		4	1.2.8			
3.5		2		2	3.5.11			13
3.5		2	2		3.5.10		1996 SY2 Q1	
3.5		6			3.5.6		1996 SY2 Q3	14
3.2		2		2	3.2.2			15
3.2		2	2		3.2.2		1996 SY2 Q4	
3.2	(a)	4	4		3.2.4		1996 SY2 Q7	16
2.5	(b)	4	4					
3.1	(a)	2	2		3.1.4		1996 SY2 Q8	17
3.1	(b)(i)	2		2	3.1.8			
3.1	(b)(ii)	4	4		3.1.9	1.5.4		
3.1	(b)(iii)	4		4	3.1.7			
3.1	(c)	3	3		3.1.1			
3.5	(a)	4	4		3.5.4		1996 SY2 Q10	19
3.2	(b)(i)	3	3		3.2.9			

Main unit \&			Marks distribution		Content Reference:		Source	Page
Outcome	Part	Marks	C	A/B	Main	Additional		
1.2	(a)	2	2		1.2.4	1.2.5	1997 SY1 Q1	20
2.1	(b)	2	2		2.1.1			
1.2	(c)	2	2		1.2.4			
1.3		5	5		1.3.4		1997 SY1 Q5	21
3.2		3	3		3.2.2	3.2.1	1997 SY1 Q6	22
3.2		2		2	3.2.2			
1.2		5	5		1.2.8		1997 SY1 Q7	23
1.1		2	2		1.1.6		1997 SY1 Q9	24
2.2		4		4	2.2.1	1.1.6		
1.2		6	6		1.2.8		1997 SY1 Q10	25
2.3	(a)	3	3		2.3.7	2.3.4	1997 SY1 Q13	26
2.3	(b)	6		6	2.3.11	2.3.13		
2.2	(a)	4	4		2.2.5		1997 SY1 Q14	27
2.2	(b)(i)	3	3		2.2.5			
2.2	(b)(ii)	5		5	2.2.5			
2.5		2	2		2.5.8		1997 SY1 Q	29
3.5		6	6		3.5.8	3.5.6		
3.5		2		2	3.5.8			
1.4	(a)	1	1		1.4.1		1997 SY1 Q16	30
1.4	(b)	2	2					
1.4	(c)	2	2		1.4.1			
1.4	(d)	2		2				
1.4	(e)	2		2				
3.5		5	5		3.5.6		1997 SY2 Q1	32
3.5		2	2		3.5.10		1997 SY2 Q2	33
3.5		2		2	3.5.11			
3.1		6	6		3.1 .9		1997 SY2 Q3	34
3.2	(i)	1	1		3.2.4		1997 SY2 Q5	35
3.2	(ii)	3	3		3.2.9			
3.2	(iii)				3.2.			
3.2	(a)	3	3		3.2.7		1997 SY2 Q9	36
	(a)	2	2				1997 SY2 Q10	37
3.1	(b)	4	4		3.1.7			
3.1	(c)(i)	2		2	3.1 .8			
3.1	(c)(ii)	3		3	3.1.8			
3.1	(d)	4		4	3.1.9			

Main unit \&		Marks distribution			Content Reference:			
Outcome	Part	Marks	C	A/B	Main	Additional	Source	Page
1.2		3	3		1.2.4		1998 SY1 Q1	39
$1 \cdot 3$		5	5		1.3.4		1998 SY1 Q3	40
1.2		5		5	1.2.8		1998 SY1 Q6	41
2.3		7	4	3	2.3.9		1998 SY1 Q7	42
2.2		4	5		2.2.2		1998 SY1 Q8	43
2.4		5	2	3	2.4.7	1.1.6	1998 SY1 Q9	44
1.2	(a)	4	4		1.2.8		1998 SY1 Q10	45
1.2	(b)	3	3		1.2.8			
2.2	(a)	4	4		2.2.5		1998 SY1 Q12	46
2.2	(b)	3		3	2.2.5			
1.4	(a)	1	1		1.4.9		1998 SY1 Q13	47
1.4	(b)	4	4		1.4.9			
1.4	(c)	4	4		1.4.9			
1.4	(d)	1	1		1.4.9			
1.4	(e)	2	2		1.4.9			
1.5	(a)	2	2		1.5.1		1998 SY1 Q14	49
1.5	(b)	7	7		1.5.4			
1.2	(a)	3	3		1.2.4	1.3.4	1998 SY1 Q15	51
2.2	(b)	2		2	2.2.2			
1.3	(c)	4		4	1.3.6			
2.4	(a)	4	4		2.4.2		1998 SY1 Q16	53
2.4	(b)	6	2	4	2.4.3			
3.5		6	6		3.5.6	3.2.2	1998 SY2 Q1	55
3.1		5	5		3.1.7	3.1.4	1998 SY2 Q2	56
3.2		3	3		3.2.4		1998 SY2 Q4	57
3.2	(i)	1	1		3.2.2		1998 SY2 Q7	58
3.2	(ii)	1	1		3.2.2			
3.5	(iii)	6	2	4	3.5.6	3.2.2		
1.5	(iv)	4	4		1.5.4			
3.2	(v)	3		3	3.2.2			
3.5	(i)	6	2	4	3.5.11	3.5.10	1998 SY2 Q9	60
2.5	(ii)	7	7		2.5.5	3.5.3		
3.5		2	2		3.5.1			

Main unit \&		Marks distribution			Content Reference:		Source	Page
Outcome	Part	Marks	C	A/B	Main	Additional		
1.5		5	5		1.5.4	1.5.5	1999 SY1 Q1	62
2.4	(a)	3	3		2.4.2		1999 SY1 Q2	63
2.4	(b)	3	3	(6)	2.4.3			
1.2	(a)	3	3		1.2.4		1999 SY1 Q3	64
1.2	(b)	3	3		1.2.4	1.2.5		
2.2		5		5	2.2.1		1999 SY1 Q5	
2.3	(a)	1	1		2.3.9		1999 SY1 Q7	66
2.3	(b)	4	4		2.3.10			
2.2		6	6		2.2.2		1999 SY1 Q9	67
3.2		5		5	3.2.4		1999 SY1 Q11	68
1.4	(a)	4	4		1.4.9		1999 SY1 Q13	69
2.3	(a)	5	5		2.3.6	1.1.4	1999 SY1 Q14	70
2.3	(b)	1	1		2.3.13			
2.3	(c)	1		1	2.3.3			
2.3	(d)	4		4	2.3.14			
1.1	(a)	2	2		1.1.6		1999 SY1 Q15	71
2.2	(b)	4	4		2.2.5			
2.2	(b)(i)	1		1	2.2.7			
2.2	(b)(ii)	2		2	2.2.7			
1.2	(a)	3	3		1.2.8		1999 SY1 Q16	73
1.2.	(b)	3	3		1.2.8			
1.2	(c)	3		3	1.2.8			
3.5		5		5	3.5.6		1999 SY2 Q1	75
3.2		4	2	2	3.2.2		1999 SY2 Q2	76
3.2	(i)	6	4	2	3.2.2	3.2.4	1999 SY2 Q7	77
3.2	(ii)	6	3	3	3.2.2	3.2.9		
3.5	(i)(a)	3	3		3.5 .10		1999 SY2 Q8	79
3.5	(b)	6		6	3.5.11			
2.5	(ii)	4	4		2.5.6			
3.2	(a)	5	1	4	3.2.2		1999 SY2 Q9	81
3.2	(b)	2	2		3.2.3			
3.1	(i)	6	6		3.1 .6		SY2 1999 Q10	82
3.1		3		3	3.1.7			
3.5	(ii)	6	6		3.5.4	3.1.3/4		

Main unit \& Outcome	Part	Marks	Marks distribution		Content Reference:		Source	Page
			C	A/B	Main	Additional		
1.2	(a)	2	2		1.2.4	1.2.5	2000 SY1 Q1	84
2.1	(b)	3		3	2.1.5			
2.2		2		2	2.2.1			
3.4		4	4		3.4.2		2000 SY1 Q3	85
2.3		3	3		2.3.7	2.3.4	2000 SY1 Q4	86
2.3		2	2		2.3.6	2.3.7		
2.3		2	2		2.3.13			
2.1		2	2		2.1.1	1.2.4	2000 SY1 Q6	87
1.2		3	3		1.2.4			
1.4		1	1		1.4.3			
1.4	(i)	1	1		1.4.7		2000 SY1 Q7	88
1.4	(ii)	2	2		1.4.7			
1.2		4	4		1.2.8		2000 SY1 Q8	90
1.1		3			1.1.6		2000 SY1 Q10	91
2.2		3			2.2.1			
1.4	(a)	5	5		1.4 .9	1.2.4/5	2000 SY1 Q12	92
2.2	(b)	4	2	2	2.2.4	1.3.3		
	(c)	2		2	1.3.6			
1.5	(a)	5		5	1.5.4		2000 SY1 Q13	94
	(b)	2						
	(c)	2						
3.5		5	5		3.5.6		2000 SY1 Q14	96
3.5		4		4	3.5.8			
2.2	(a)	4	4		2.2 .6		2000 SY1 Q15	97
2.2	(b)	4	4		2.2 .5			
	(c)	2						
	(d)	1						

Main unit \&			Marks distribution		Content Reference:		Source	Page
Outcome	Part	Marks	C	A/B	Main	Additional		
3.5		5	2	3	3.5.10	3.5.11	2000 SY2 Q1	98
3.5		5	1	4	3.5.6		2000 SY2 Q3	99
3.2	(a)	2	2		3.2.3		2000 SY2 Q4	100
3.2	(b)	2	2		3.2.4			
3.2	(c)	2		2	3.2.4	3.5.4		
3.5		3	3		3.5.3	3.5.4	2000 SY2 Q5	101
3.2	(a)	4	4		3.2.4	3.2.2	2000 SY2 Q7	102
3.5	(b)	5	5		3.5.6	3.2.2		
3.5	(c)	2	2		3.5.3			
3.2	(d)	4		4	3.2.2			
3.1	(a)	4	4		3.1.7	3.1.4	2000 SY2 Q8	104
3.1	(b)(i)	3		3	3.1.8			
3.1	(b)(ii)	4		4	3.1.8			
3.1	(c)	4		4	3.1.9	3.1.5		

Section 4

Question Bank

Differentiate with respect to x
(a) $y=x^{2} \tan ^{-1} x, \quad 2$
(b) $y=\frac{\ln x}{x^{3}+1}, \quad x>0$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2	2.1	2		2.1 .1	1.2 .4	1996 SY1 Q1
(b)	3	1.2	3		1.2 .4	1.2 .5	

(a)

$$
\begin{aligned}
& y=x^{2} \tan ^{-1} x \\
& \frac{d y}{d x}=2 x \tan ^{-1} x+\frac{x^{2}}{1+x^{2}} \quad 1 \text { for the product rule } \\
& 1 \text { for derivative of } \tan ^{-1} x
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=\frac{\ln x}{x^{3}+1} \\
& \frac{d y}{d x}=\frac{\frac{1}{x}\left(x^{3}+1\right)-3 x^{2} \ln x}{\left(x^{3}+1\right)^{2}} \quad 1 \text { for quotient rule } \\
&=\frac{1 \text { for handling } \ln x}{1 \text { for derivative of denominator }} \\
&=\left(x^{3}+1\right)-3 x^{3} \ln x \\
&\left.x^{3}+1\right)^{2}
\end{aligned}
$$

The point A represents $-5+5 i$ on an Argand diagram and $A B C D$ is a square with centre $-2+2 i$. Find the complex numbers represented by the points B, C and D, giving your answers in the form $x+i y$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	4	2.3	4		2.3	2.3 .5	1996 SY1 Q2

A is $-5+5 i$, centre $-2+2 i$.

1 for a diagram or other approach

$$
1+5 i, 1-i,-5-i
$$

$1,1,1$

Use Gaussian elimination to solve the following system of equations.

$$
\begin{aligned}
& x-z=2 \\
& 2 y-3 z=6 \\
& 2 x+y+z=1
\end{aligned}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	1.5	5		1.5 .4		1996 SY1 Q5

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 0 & -1 & 2 \\
0 & 2 & -3 & 6 \\
2 & 1 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 0 & -1 & 2 \\
0 & 2 & -3 & 6 \\
0 & 1 & 3 & -3
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 0 & -1 & 2 \\
0 & 2 & -3 & 6 \\
0 & 0 & 4.5 & -6
\end{array}\right) \\
& z=-\frac{4}{3} ;
\end{aligned}
$$

I have just received a letter from Scottish Condensed Books PLC telling me that I have won a prize in their contest. They tell me that I have won an income for the rest of my life and have arranged for the prize to be paid as follows.

At the end of the first year, I will receive $£ 10000$; at the end of the second year I will get $£ 12000$; at the end of the third year $£ 14000$ and so on, with the amount increasing by $£ 2000$ each year.
What will my total prize money amount to at the end of the $n^{\text {th }}$ year?
How many years will I have to live before the accumulated prize money exceeds $£ 250000$?

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	3	2.4	3		2.4 .2		1996 SY1 Q7
	2	2.4	2		2.4 .2		

An arithmetic series with $a=10000$ and $d=2000$.
1

$$
\begin{aligned}
S_{n} & =10000+12000+14000+\ldots \\
& =\frac{n}{2}\{2 a+(n-1) d\} \\
& =\frac{n}{2}\{20000+(n-1) 2000\} \\
& =n\{10000+1000 n-1000\} \\
& =1000 n(9+n) .
\end{aligned}
$$

Note that the formula need not be simplified to obtain the third mark.

$$
\begin{aligned}
1000 n(9+n) & >250000 \\
n^{2}+9 n & >250 \\
(n+41 / 2)^{2} & >250+201 / 4 \\
& =270^{1 / 4} \\
n+41 / 2 & >16.439 \ldots \\
n & >16.439-4.5 \\
& =11.939
\end{aligned}
$$

It takes 12 years.
(a) By using the substitution $u=2 \sin x$, or otherwise, evaluate the definite integral

$$
\begin{equation*}
\int_{0}^{\pi / 6} \frac{\cos x}{1+4 \sin ^{2} x} d x \tag{4}
\end{equation*}
$$

(b) Use integration by parts to find

$$
\int x^{2} \ln x d x
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	1.3	4		1.3 .4		1996 SY1 Q8
(b)	3	2.2	3		2.2 .2		

(a) $u=2 \sin x ; d u=2 \cos x d x$

$$
x=0 \Rightarrow u=0 ; x=\frac{\pi}{6} \Rightarrow u=1
$$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{6}} \frac{\cos x}{1+4 \sin ^{2} x} d x & =\frac{1}{2} \int_{0}^{\frac{\pi}{8}} \frac{1}{1+u^{2}} d u \\
& =\frac{1}{2}\left[\tan ^{-1} u\right]_{0}^{1} \\
& =\frac{\pi}{8} .
\end{aligned}
$$

$$
\mathbf{1}
$$

$$
\mathbf{1}
$$

(b)

$$
\begin{aligned}
\int x^{2} \ln x d x & =\ln x \int x^{2} d x-\int \frac{1}{x}\left(\frac{1}{3} x^{3}\right) d x \\
& =\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+c .
\end{aligned}
$$

Solve the equation

$$
z^{2}+\sqrt{8} z+4=0
$$

for the complex number z.
Give the modulus and argument of each of the roots and illustrate them on an Argand diagram.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	2.3	5		2.3 .11	2.3 .5	1996 SY1 Q10

$$
\begin{gather*}
z^{2}+\sqrt{8} z+4=0 \\
z=\frac{-\sqrt{ } 8 \pm \sqrt{8-16}}{2} \quad \quad 1 \text { for using formula } \\
=\frac{-\sqrt{ } 8 \pm \sqrt{ } 8 i}{2} \tag{1}\\
=\sqrt{2}(-1 \pm i) \\
z_{1}=\sqrt{2}(-1+i) \\
\Rightarrow\left|z_{1}\right|=\sqrt{(\sqrt{ } 2)^{2}+(\sqrt{ } 2)^{2}}=2 \text { and } \arg z_{1}=\tan ^{-1}\left(\frac{\sqrt{ } 2}{-\sqrt{2}}\right)=\frac{3 \pi}{4} \tag{1}\\
z_{2}=\sqrt{ } 2(-1-i) \\
\Rightarrow\left|z_{2}\right|=\sqrt{(\sqrt{ } 2)^{2}+(\sqrt{ } 2)^{2}}=2 \text { and } \arg z_{2}=\tan ^{-1}\left(\frac{-\sqrt{ } 2}{-\sqrt{2}}\right)=\frac{5 \pi}{4} \\
\times
\end{gather*}
$$

Let f be the function given by

$$
f(x)=6 x^{3}-5 x-1
$$

Find algebraically the values of x for which the slope of this function is between -3 and 3 .

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	1.2	5		1.2 .8		1996 SY1 Q12

$$
\begin{aligned}
f(x) & =6 x^{3}-5 x-1 . \\
f^{\prime}(x) & =18 x^{2}-5 \\
18 x^{2}-5 & <3 \\
18 x^{2} & <8 \\
x^{2} & <\frac{4}{9} \\
-\frac{2}{3} & <x<\frac{2}{3} \\
18 x^{2}-5 & >-3 \\
18 x^{2} & >2 \\
x^{2} & >\frac{1}{9} \\
x>\frac{1}{3} & \text { or } x<-\frac{1}{3}
\end{aligned}
$$

Combining these

$$
\begin{equation*}
-\frac{2}{3}<x<-\frac{1}{3} \text { or } \frac{1}{3}<x<\frac{2}{3} . \tag{1}
\end{equation*}
$$

When a valve is opened, the rate at which the water drains from a pool is proportional to the square root of the depth of the water.
This can be represented by the differential equation

$$
\frac{d h}{d t}=-\frac{\sqrt{h}}{10}, \quad h \geqslant 0
$$

where h is the depth of the water (in metres) and t is the time (in minutes) elapsed since the valve was opened.
(a) Express h as a function of t.
(b) Find the solution of the equation given that the pool was initially 4 m deep.
(c) The next time the pool had to be drained the water was initially 9 m deep. How long will it take to drain the pool on this occasion?

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	2.2	4		2.2 .5		1996 SY1 Q13
(b)	2	2.2	2		2.2 .5		
(c)	3	2.2		3	2.2 .5		

(a)

$$
\begin{aligned}
\frac{d h}{d t} & =-\frac{\sqrt{ } h}{10} \\
\int h^{-1 / 2} d h & =\int-\frac{1}{10} d t \\
\frac{h^{1 / 2}}{1 / 2} & =-\frac{t}{10}+c \\
\sqrt{h} & =\frac{c}{2}-\frac{t}{20} \\
h & =\left(\frac{c}{2}-\frac{t}{20}\right)^{2}
\end{aligned}
$$

(b) $t=0, h=4 \Rightarrow 4=\left(\frac{c}{2}\right)^{2} \Rightarrow c=4$
$\therefore \quad h=\left(2-\frac{t}{20}\right)^{2}$
(c) Using $h=\left(\frac{c}{2}-\frac{t}{20}\right)^{2}$ again
$t=0, h=9 \Rightarrow 9=\left(\frac{c}{2}\right)^{2} \Rightarrow c=6$
$\therefore \quad h=\left(3-\frac{1}{20}\right)^{2} \quad 1$
$h=0 \Rightarrow t=60 \quad 1$
The pool would take 1 hour to empty.
(a) (i) Show that

$$
\frac{3}{2} \int_{0}^{a} \sqrt{x+1} d x=(a+1)^{\frac{3}{2}}-1
$$

(ii) Hence find $\int_{0}^{1} \sqrt{x+1} d x$ correct to 3 decimal places.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)(i)	2	1.3	2		1.3 .2		1996 SY1 Q14
(a)(ii)	2	1.3	2		1.3 .2		

(a) (i)

$$
\begin{align*}
\frac{3}{2} \int_{0}^{a} \sqrt{x+1} d x & =\left[(x+1)^{\frac{3}{2}}\right]_{0}^{a} \\
& =(a+1)^{\frac{3}{2}}-1 \tag{1}
\end{align*}
$$

$$
\mathbf{1}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{1} \sqrt{x+1} d x & =\frac{2}{3}\left[(1+1)^{\frac{3}{2}}-1\right] \\
& =\frac{2}{3}(2 \sqrt{ } 2-1)=1.219 \text { to } 3 \mathrm{dps}
\end{aligned}
$$

(a) Find a real root of the cubic polynomial

$$
c(x)=x^{3}-x^{2}-x-2
$$

and hence factorise it as a product of a linear term $l(x)$ and a quadratic term $q(x)$.
(b) Show that $c(x)$ cannot be written as a product of three real linear factors.
(c) Use your factorisation to find values of A, B and C such that

$$
\frac{5 x+4}{x^{3}-x^{2}-x-2}=\frac{A}{l(x)}+\frac{B x+C}{q(x)} .
$$

Hence obtain the indefinite integral

$$
\int \frac{5 x+4}{x^{3}-x^{2}-x-2} d x
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	1.1	3				1996 SY1 Q15
(b)	1	1.1	1				
(c)	7	2.2		7	2.2 .1		

(a) $\quad c(x)=x^{3}-x^{2}-x-2$
$c(2)=8-4-2-2=0$
$\therefore c(x)=(x-2)\left(x^{2}+x+1\right)$

1
1 for division, 1 for stating $\boldsymbol{c}(\boldsymbol{x})$
(b) The discriminant of $x^{2}+x+1$ is $1-4<0$ so no real factors.
(c)

$$
\begin{gather*}
\frac{5 x+4}{x^{3}-x^{2}-x-2}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+x+1} . \\
5 x+4=A\left(x^{2}+x+1\right)+(B x+C)(x-2) \tag{1}\\
x=2 ; \quad 14=7 A \Rightarrow A=2 \tag{1}\\
x=0 ; \quad 4=2+C(-2) \Rightarrow C=-1 \tag{1}\\
x=1 ; \quad 9=6+(B+1)(-1) \Rightarrow B=-2 \tag{1}\\
x= \\
\begin{aligned}
\int \frac{5 x+4}{x^{3}-x^{2}-x-2} d x & =\int \frac{2}{x-2}-\frac{2 x+1}{x^{2}+x+1} d x \\
& =\ln (x-2)-\ln \left(x^{2}+x+1\right)+c \\
& =\ln \frac{x-2}{x^{2}+x+1}+c .
\end{aligned} \tag{1}
\end{gather*}
$$

(a) Two straight pieces of fencing $X Y$ and $Y Z$, linked at Y, are used together with a straight wall to make an enclosure XYZ as shown. Given that XY has length a metres and YZ length b metres, write down an expression for the area of XYZ and find the value of the angle θ which maximises this area.

(b) Two straight walls meet at A at an angle $\frac{\pi}{4}$. A straight piece of fencing PQ of length 10 metres is used to create an enclosure APQ as shown.

(i) Show that the area $A P Q$ is given by

$$
50 \sqrt{ } 2 \sin \phi \sin \left(\frac{3 \pi}{4}-\phi\right)
$$

(ii) If the angle ϕ is varied, using differentiation or otherwise, find the value of ϕ which maximises the area APQ.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	1.2	3		1.2 .8		1996 SY1 Q16
(b)(i)	4	1.2	4		1.2 .8		
(b)(ii)	4	1.2		4	1.2 .8		

(a) Area $A_{1}(\theta)=1 / 2 a b \sin \theta$
$A_{2}^{\prime}(\theta)=1 / 2 a b \cos \theta=0 \quad$ when $\theta=\frac{\pi}{2}$.
$A_{2}^{\prime \prime}(\theta)=-1 / 2 a b \sin \theta ; A_{2}^{\prime \prime}\left(\frac{\pi}{2}\right)=-1 / 2 a b<0$
\therefore the area is maximum when $\theta=\frac{\pi}{2}$.
(b) (i)

$$
\begin{align*}
\angle A Q P & =\frac{3 \pi}{4}-\phi \\
\frac{A Q}{\sin \phi} & =\frac{10}{\sin \frac{\pi}{4}} \\
\Rightarrow A Q & =10 \sqrt{2} \sin \phi \\
\text { Area of } A P Q, \quad A_{2}(\phi) & =\frac{1}{2} \times 10 \times 10 \sqrt{2} \sin \phi \sin \left(\frac{3 \pi}{4}-\phi\right) \\
& =50 \sqrt{2} \sin \phi \sin \left(\frac{3 \pi}{4}-\phi\right) \tag{1}
\end{align*}
$$

(ii)

$$
\begin{gathered}
A_{2}{ }^{\prime}(\phi)=50 \sqrt{2}\left[\cos \phi \sin \left(\frac{3 \pi}{4}-\phi\right)-\sin \phi \cos \left(\frac{3 \pi}{4}-\phi\right)\right] \\
=50 \sqrt{2} \sin \left(\frac{3 \pi}{4}-2 \phi\right)=0 \text { at stationary values } \\
\therefore \frac{3 \pi}{4}-2 \phi=0, \pi, 2 \pi, \ldots
\end{gathered}
$$

Likely to be $\phi=\frac{1}{2}\left(\frac{3 \pi}{4}\right)=\frac{3 \pi}{8}$.

$$
\begin{aligned}
A_{2}^{\prime \prime}(\phi) & =-100 \sqrt{2} \cos \left(\frac{3 \pi}{4}-2 \phi\right) \\
A_{2}^{\prime \prime}\left(\frac{3 \pi}{8}\right) & =-100 \sqrt{2} \cos \left(\frac{3 \pi}{4}-\frac{3 \pi}{4}\right)<0
\end{aligned}
$$

i.e. the area is maximum when $\phi=\frac{3 \pi}{8}$.

Use the Euclidean Algorithm to find integers x, y such that

$$
83 x+239 y=1
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	2	3.5	2		3.5 .10		1996 SY2 Q1
	2	3.5		2	3.5 .11		

$$
\begin{align*}
239 & =2 \times 83+73 \tag{1}\\
83 & =1 \times 73+10 \\
10 & =3 \times 3+1
\end{align*}
$$

Thus

$$
\begin{align*}
1 & =10-3(73-7 \times 10) \tag{1}\\
& =22 \times 10-3 \times 73 \\
& =22(83-73)-3 \times 73 \\
& =22 \times 83-25(239-2 \times 83) \\
& =72 \times 83-25 \times 239 \tag{1}
\end{align*}
$$

Use induction to prove that, for all positive integers n,

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{r}{2^{r}}=2-\frac{(n+2)}{2^{n}} \tag{6}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	6	3.5			3.5 .6		1996 SY2 Q3

Check $n=1:$ LHS $=\frac{1}{2} ;$ RHS $=2-\frac{3}{2}=\frac{1}{2}$.
1
Suppose true for $n=k$, i.e.

$$
\begin{equation*}
\sum_{r=1}^{k} \frac{r}{2^{r}}=2-\frac{k+2}{2^{k}} \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
\sum_{r=1}^{k+1} \frac{r}{2^{r}} & =\sum_{r=1}^{k} \frac{r}{2^{r}}+\frac{k+1}{2^{k+1}} \\
& =2-\frac{k+2}{2^{k}}+\frac{k+1}{2^{k+1}} \\
& =2-\frac{1}{2^{k+1}}(2 k+4-k-1) \\
& =2-\frac{k+3}{2^{k+1}} \\
& =2-\frac{(k+1)+2}{2^{k+1}}
\end{aligned}
$$

So the result is true for $n=1$, and is true for $n=k+1$ whenever it is true for $n=k$. So it is true for all $n \geqslant 1$.

The square $n \times n$ matrix A satisfies the equation

$$
A^{2}=5 A-6 I
$$

where I is the $n \times n$ identity matrix. Show that A is invertible and express A^{-1} in the form $p A+q I$.
Obtain a similar expression for A^{3}.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	2	3.2	2		3.2 .2		1996 SY2 Q4
	2	3.2		2	3.2 .2		

$$
\begin{aligned}
A^{2} & =5 A-6 I, \text { so } \\
6 I & =A(5 I-A) \\
I & =A\left[\frac{1}{6}(5 I-A)\right]
\end{aligned}
$$

1

So A^{-1} exists and equals $\frac{1}{6}(5 I-A)$.
1
[An answer which uses \boldsymbol{A}^{-1} in the early stages can only gain 1 mark.]
Thus

$$
\begin{aligned}
A^{3} & =A(5 A-6 I) \\
& =5 A^{2}-6 A=5(5 A-6 I)-6 A \\
& =19 A-30 I
\end{aligned}
$$

(a) Let $A=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ and $B=\left(\begin{array}{cc}c & -d \\ d & c\end{array}\right)$ where $a, b, c, d \in \mathbf{R}$.

Find $A B$ and evaluate the determinants $\operatorname{det} A, \operatorname{det} B$ and $\operatorname{det} A B$.
By using the fact that $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$, deduce the identity

$$
\begin{equation*}
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} . \tag{4}
\end{equation*}
$$

(b) Write each of the prime numbers 17 and 41 as the sum of the squares of two positive integers.
Hence use the result from (i) to express 697 as $p^{2}+q^{2}$ and as $r^{2}+s^{2}$ where p, q, r and s are distinct positive integers.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	3.2	4		3.2 .4		1996 SY2 Q7
(b)	4	2.5	4				

(a)

$$
\begin{gather*}
A B=\binom{a c-b d-a d-b c}{a d+b c a c-b d} \tag{1}\\
\operatorname{det} A=a^{2}+b^{2} ; \operatorname{det} B=c^{2}+d^{2} \\
\operatorname{det} A B=(a c-b d)^{2}-(-a d-b c)(a d+b c) \\
=(a c-b d)^{2}+(a d+b c)^{2}
\end{gather*}
$$

Hence

$$
\begin{equation*}
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2} \tag{1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
17=4^{2}+1^{2}, \quad 41=4^{2}+5^{2} \tag{1}
\end{equation*}
$$

Thus

$$
\begin{align*}
697 & =17 \times 41 \\
& =\left(4^{2}+1^{2}\right)+\left(4^{2}+5^{2}\right) \tag{1}\\
& =(4 \times 4-1 \times 5)^{2}+(4 \times 5+1 \times 4)^{2} \\
& =11^{2}+24^{2}
\end{align*}
$$1

and also

$$
\begin{equation*}
697=\left(4^{2}+1^{2}\right)\left(5^{2}+4^{2}\right)=16^{2}+21^{2} \tag{1}
\end{equation*}
$$

(a) Let $\mathbf{u}=\mathbf{i}-4 \mathbf{j}-\mathbf{k}$ and $\mathbf{v}=2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$. Find $\mathbf{u} . \mathbf{v}$ and $\mathbf{u} \times \mathbf{v}$.
(b) Three planes π_{1}, π_{2} and π_{3} are given by the equations

$$
\begin{aligned}
& \pi_{1}: x-4 y-z=3 \\
& \pi_{2}: 2 x-2 y+z=6 \\
& \pi_{3}: 3 x-11 y-2 z=10 .
\end{aligned}
$$

(i) Find the acute angle between the planes π_{1} and π_{2}.
(ii) By using Gaussian elimination, or otherwise, show that the planes π_{1}, π_{2} and π_{3} intersect in a point Q , and obtain the coordinates of Q .
(iii) Find an equation for the line L in which π_{1} and π_{2} intersect, and the point R in which L intersects the $x y$-plane.
(c) Three non-zero vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are such that

$$
\mathbf{a} \times \mathbf{b}=\mathbf{c} \quad \text { and } \quad \mathbf{b} \times \mathbf{c}=\mathbf{a} .
$$

Explain briefly why a,b and \mathbf{c} must be mutually perpendicular and why b must be a unit vector.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2	3.1	2		3.1 .4		1996 SY2 Q8
(b)(i)	2	3.1		2	3.1 .8		
(b)(ii)	4	3.1	4		3.1 .9	1.5 .4	
(b)(iii)	4	3.1		4	3.1 .7		
(c)	3	3.1	3		3.1 .1		

(a)

$$
\begin{aligned}
\mathbf{u} . \mathbf{v} & =2+8-1=9 \\
\mathbf{u} \times \mathbf{v} & =-6 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}
\end{aligned}
$$

(b) (i) The normals to the planes are \mathbf{u} and \mathbf{v}, 1 so the required angle is θ where

$$
\begin{gathered}
9=\sqrt{18} \sqrt{9} \cos \theta \\
\text { i.e. } \cos \theta=\frac{1}{\sqrt{2}}, \text { so } \theta=\frac{\pi}{4}\left(\text { or } 45^{\circ}\right)
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -4 & -1 & 3 \\
2 & -2 & 1 & 6 \\
3 & -11 & -2 & 10
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & -4 & -1 & 3 \\
0 & 6 & 3 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & -4 & -1 & 3 \\
0 & 1 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 1
\end{array}\right)
\end{aligned}
$$

The planes do intersect with $\frac{1}{2} z=1$, i.e. $z=2, y=-1$, $x=-4+2+3$.
So Q is $(1,-1,2)$.
(iii) Note that this is just one of many routes to one of many equations.
L is in the direction of $\mathbf{u} \times \mathbf{v}=-6 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$,
and L passes through Q, so an equation is

$$
\frac{x-1}{-6}=\frac{y+1}{-3}=\frac{z-2}{6}(=s)
$$

L meets the $x y$-plane where $z=0$,
i.e. where $s=-\frac{1}{3}$.

1
So $x=3, y=0$, i.e. R is $(3,0,0)$
(c) $\mathbf{a} \times \mathbf{b}=\mathbf{c}$, so \mathbf{a} is perpendicular to \mathbf{c} and b is perpendicular to \mathbf{c}
and
$\mathbf{b} \times \mathbf{c}=\mathbf{a}$, so \mathbf{a} is perpendicular to \mathbf{b}
Since all three vectors are mutually perpendicular
$\mathbf{a} \times \mathbf{b}=\mathbf{c} \Rightarrow a b=c$, where $a=|\mathbf{a}|$, etc.
$\mathbf{b} \times \mathbf{c}=\mathbf{a} \Rightarrow b c=a$
1
Thus $(b c) b=c \Rightarrow b^{2}=1 \Rightarrow b=1$ and the rest follow.
(a) Prove that $\sqrt{ } 2$ is irrational.
(b) (i) Show that if

$$
A=\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right) \quad \text { and } \quad\binom{x_{1}}{y_{1}}=A\binom{x_{0}}{y_{0}}
$$

then

$$
x_{1}^{2}-2 y_{1}^{2}=x_{0}^{2}-2 y_{0}^{2} .
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	3.5	4		3.5 .4		1996 SY2 Q10
(b)(i)	3	3.2	3		3.2 .9		

(a) Suppose that $\sqrt{ } 2=\frac{m}{n}$ where the integers m, n have no common factor.

Then $m^{2}=2 n^{2}$.
Thus m is even, so $m=2 u$ for some integer u.
Thus $4 u^{2}=2 n^{2}$ i.e. $n^{2}=2 u^{2}$, so n is also even, contradicting the assumption.
(b) (i)

$$
x_{1}=3 x_{0}+4 y_{0} \text { and } y_{1}=2 x_{0}+3 y_{0}
$$

$$
\begin{aligned}
x_{1}^{2}-2 y_{1}^{2} & =9 x_{0}^{2}+24 x_{0} y_{0}+16 y_{0}^{2}-8 x_{0}^{2}-24 x_{0} y_{0}-18 y_{0}^{2} \\
& =x_{0}^{2}-2 y_{0}^{2}
\end{aligned}
$$

$$
\mathbf{1}
$$

Differentiate the following functions with respect to x.
(a) $y=x^{3} e^{-x^{2}}$,
(b) $f(x)=\tan ^{-1}(\sqrt{x-1}), \quad x>1$
(c) $f(x)=\frac{x^{2}}{\cos x}, \quad \frac{-\pi}{2}<x<\frac{\pi}{2}$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2	1.2	2		1.2 .4	1.2 .5	1997 SY1 Q1
(b)	2	2.1	2		2.1 .1		
(c)	2	1.2	2		1.2 .4		

(a) $y=x^{3} e^{-x^{2}} \Rightarrow$

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2} e^{-x^{2}}+x^{3} e^{-x^{2}}(-2 x) \quad 1 \text { for product rule } \\
& \quad 1 \text { for } \frac{d}{d x}\left(e^{-x^{2}}\right)=(-2 x) e^{-x^{2}} \\
& =3 x^{2} e^{-x^{2}}-2 x^{4} e^{-x^{2}}
\end{aligned}
$$

(b)

$$
\begin{array}{rlr}
f(x)=\tan ^{-1}(\sqrt{x-1})=\tan ^{-1}(x-1)^{1 / 2} & \\
\begin{array}{rlr}
f^{\prime}(x) & =\frac{1}{1+(x-1)} \cdot 1 / 2(x-1)^{-1 / 2} & 1 \text { for } \frac{1}{1+(x-1)} \\
& =\frac{1}{2 x \sqrt{x-1}} &
\end{array}
\end{array}
$$

(c)

$$
\begin{aligned}
f(x) & =\frac{x^{2}}{\cos x} \\
f^{\prime}(x) & =\frac{2 x \cos x-x^{2}(-\sin x)}{\cos ^{2} x} \quad 1 \text { for qoutient rule }
\end{aligned}
$$

$$
1 \text { for accuracy }
$$

$$
=\frac{2 x \cos x+x^{2} \sin x}{\cos ^{2} x} .
$$

By means of the substitution $u=x^{2}-8$, find

$$
\int_{3}^{4} x^{3}\left(x^{2}-8\right)^{\frac{1}{4}} d x
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	1.3	5		1.3 .4		1997 SY1 Q5

$$
\begin{align*}
& u=x^{2}-8 \Rightarrow d u=2 x d x \Rightarrow d x=1 / 2 d u \tag{1}\\
& x=3 \Rightarrow u=1 \text { and } x=4 \Rightarrow u=8 \\
& \begin{aligned}
\int_{3}^{4} x^{3}\left(x^{2}-8\right)^{1 / 3} d x & =\int_{1}^{8}(u+8)(u)^{1 / 3} 1 / 2 d u \\
& =1 / 2 \int_{1}^{3}\left(u^{4 / 3}+8 u^{1 / 3}\right) d u \\
& =1 / 2\left[\frac{3}{7} u^{7 / 3}+6 u^{4 / 3}\right]_{1}^{8} \\
& =1 / 2\left[\frac{384}{7}+96\right]-1 / 2\left[\frac{3}{7}+6\right] \\
& =1 / 2\left[54 \frac{3}{7}+90\right]=72 \frac{3}{14}
\end{aligned}
\end{align*}
$$

Let A be the matrix $\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$.
Show that $A^{2}-7 A=c I$ where c is a real number and I is the 2×2 identity matrix.
By considering this equation in the form

$$
A(A-7 I)=c I,
$$

obtain the matrix B for which

$$
A B=I .
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	3	3.2	3		3.2 .2	3.2 .1	1997 SY1 Q6
	2	3.2		2	3.2 .2		

$A=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$ so $A^{2}=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)=\left(\begin{array}{cc}18 & 7 \\ 14 & 11\end{array}\right)$
Hence $A^{2}-7 A=\left(\begin{array}{cc}18 & 7 \\ 14 & 11\end{array}\right)-\left(\begin{array}{cc}28 & 7 \\ 14 & 21\end{array}\right)=\left(\begin{array}{cc}-10 & 0 \\ 0 & -10\end{array}\right)$
which $c I$ for $c=-10$.

$$
\begin{aligned}
A(A-7 I) & =-10 I \\
\Rightarrow B & =-\frac{1}{10}(A-7 I) \\
& =-\frac{1}{10}\left(\begin{array}{cc}
-3 & 1 \\
2 & -4
\end{array}\right)
\end{aligned}
$$

The rectangle $Q R S T$ is situated beneath the graph of the function $f(x)=1-x^{2}$ as shown in the diagram below.

Let T be the point $(t, 0)$. Find the value of t for which the rectangle has the largest area and find this largest area.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	1.2	5		1.2 .8		1997 SY1 Q7

$$
\begin{array}{rlrl}
Q T & =2 t \text { and } S T=1-t^{2} \\
\text { Area }=A(t) & =2 t\left(1-t^{2}\right) \\
A(t) & =2 t-2 t^{3} \\
A^{\prime}(t) & =2-6 t^{2}=0 \text { at } \mathrm{SV} \\
t & = \pm \frac{1}{\sqrt{3}} & \\
A^{\prime \prime}(t) & =-12 t<0 \text { when } t>0 . & \mathbf{1} \\
\text { Maximum value } & =A\left(\frac{1}{\sqrt{3}}\right)=\frac{2}{\sqrt{3}}\left(1-\frac{1}{3}\right)=\frac{4}{3 \sqrt{3}} . & \mathbf{1} \\
\hline
\end{array}
$$

(a) Find partial fractions for

$$
\begin{equation*}
\frac{4}{x^{2}-4} \tag{2}
\end{equation*}
$$

(b) By using (a) obtain

$$
\begin{equation*}
\int \frac{x^{2}}{x^{2}-4} d x \tag{4}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	2	1.1	2		1.1 .6		1997 SY1 Q9
	4	2.2		4	2.2 .1	1.1 .6	

(a)

$$
\begin{aligned}
\frac{4}{x^{2}-4} & =\frac{A}{x-2}+\frac{B}{x+2} \\
4 & =A(x+2)+B(x-2) \\
x=2 & \Rightarrow 4 A=4 \Rightarrow A=1 \\
x=-2 & \Rightarrow-4 B=4 \Rightarrow B=-1 \\
\therefore \frac{4}{x^{2}-4} & =\frac{1}{x-2}-\frac{1}{x+2}
\end{aligned}
$$

$$
1 \text { for } A \text { and } B
$$

(b)

$$
\begin{array}{rlr}
\int \frac{x^{2}}{x^{2}-4} d x & =\int 1+\frac{4}{x^{2}-4} d x & 1 \text { for division } \\
& =\int 1+\frac{1}{x-2}-\frac{1}{x+2} d x & 1 \text { for applying (a) } \\
& =x+\ln (x-2)-\ln (x+2)+c & \mathbf{2 , \text { less } 1 \text { for }} \\
\text { each error }
\end{array}
$$

For $f(x)=\frac{1}{3} x^{3}+\frac{3}{2} x^{2}+x, x \in \mathbf{R}$, find all the values of x for which $\left|f^{\prime}(x)\right|<1$.
[A solution to this question which relies on a graphical or numerical approach will receive little or no credit.]

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	6	1.2	6		1.2 .8		1997 SY1 Q10

$$
\begin{aligned}
f(x) & =\frac{1}{3} x^{3}+\frac{3}{2} x^{2}+x \\
f^{\prime}(x) & =x^{2}+3 x+1 \\
f^{\prime}(x) & =1 \text { or } f^{\prime}(x)=-1 \\
f^{\prime}(x) & =1 \Rightarrow x^{2}+3 x=0 \\
& \Rightarrow x=0 \text { or } x=-3 \\
f^{\prime}(x) & =-1 \Rightarrow x^{2}+3 x+2=0 \\
& \Rightarrow x=-1 \text { or } x=-2 \\
\therefore-1 & <f^{\prime}(x)<1 \\
& \\
& 1 \\
& \quad 1 \\
& \text { and }-1<x<0
\end{aligned}
$$

(a) Find the modulus and argument of the complex number $2+2 \sqrt{3} i$ and plot it on an Argand diagram.
(b) By writing $z=r(\cos \theta+i \sin \theta)$, obtain a value for r and values for θ such that

$$
z^{2}=2+2 \sqrt{3} i
$$

Plot the complex numbers z on the same Argand diagram as in part (a).

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	2.3	3		2.3 .7	2.3 .4	1997 SY1 Q13
(b)	6	2.3		6	2.3 .11	2.3 .13	

(a) $z=2+2 \sqrt{3} i \Rightarrow|z|=\sqrt{4+12}=4$

1
and $\arg z=\tan ^{-1}\left(\frac{2 \sqrt{3}}{2}\right)=60^{\circ}$ (or $\frac{\pi}{3}$).

(b)

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
\Rightarrow z^{2} & =r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta+2 i \sin \theta \cos \theta\right) \\
& =r^{2}(\cos 2 \theta+i \sin 2 \theta)
\end{aligned}
$$

$$
\therefore r^{2}=4 \Rightarrow \text { and } 2 \theta=\frac{\pi}{3}
$$

$$
\Rightarrow r=2
$$

$$
\mathbf{1}
$$

$$
\Rightarrow \theta=\frac{\pi}{6} .
$$

An accident at a factory on a river results in the release of a polluting chemical. Immediately after the accident, the concentration of the chemical in the river becomes $k \mathrm{~g} / \mathrm{m}^{3}$. The river flows at a constant rate of $w \mathrm{~m}^{3}$ /hour into a loch of volume $V \mathrm{~m}^{3}$. Water flows over the dam at the other end of the loch at the same rate. The level, $x \mathrm{~g} / \mathrm{m}^{3}$, of the pollutant in the loch t hours after the accident satisfies the differential equation

$$
V \frac{d x}{d t}=w(k-x)
$$

(a) Find the general solution for x in term of t.
(ii) In fact, when the level of the pollutant in the loch has reached $5 \mathrm{~g} / \mathrm{m}^{3}$, the leak is located and plugged. The level in the river then drops to zero and the level in the loch falls according to the differential equation

$$
V \frac{d x}{d t}=-w x
$$

According to European Union standards, $1 \mathrm{~g} / \mathrm{m}^{3}$ is a safe level for the chemical. How much longer will it be before the level in the loch drops to this value?

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	2.2	4		2.2 .5		1997 SY1 Q14
(b)(i)	3	2.2	3		2.2 .5		
(b)(ii)	5	2.2		5	2.2 .5		

(a)

$$
\begin{align*}
V \frac{d x}{d t} & =w(k-x) \\
\int \frac{d x}{k-x} & =\int \frac{w}{V} d t \tag{1}\\
-\ln (k-x) & =\frac{w t}{V}+c \\
k-x & =\exp \left(-\frac{w t}{V}-c\right) \\
x & =k-\exp \left(-\frac{w t}{V}-c\right)=k-A e^{-w / / V} \quad 1 \text { for making } x \text { subject }
\end{align*}
$$

(b) $V=16000000, w=8000, k=1000$
(i) when $t=0, x=0$.

$$
\begin{array}{rlrl}
0=1000-A \Rightarrow A & =1000 & & \mathbf{1} \text { for a constant } \\
\text { i.e. } x & =1000\left(1-e^{-t / 2000}\right) & & \\
\text { when } x=10 & 10 & =1000\left(1-e^{-t / 2000}\right) & \mathbf{1} \text { for putting in } 10 \\
e^{-t / 2000} & =1-0.01 & & \\
t & =-2000 \ln 0.99 & & \\
& =20.1 \text { hours } & \mathbf{1} \text { for evaluating }
\end{array}
$$

(ii)

$$
\begin{array}{rlrl}
V \frac{d x}{d t} & =-w x & \\
\int \frac{d x}{x} & =-\int \frac{w}{V} d t & & \\
\ln x & =-\frac{w t}{V}+c^{\prime} & & \\
x & =B e^{-w / / V} & 1 \text { for separating } \\
x & &
\end{array}
$$

when $t=0, x=5 \Rightarrow B=5$
1

$$
\text { i.e. } x=5 e^{-t / 2000}
$$

so when $x=1, e^{-t / 2000}=0.2$

$$
\begin{aligned}
t & =-2000 \ln 0.2 \\
& \approx 3220 \text { hours! }
\end{aligned}
$$

Make use of the fact that

$$
\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}
$$

to write down a formula for $\sum_{k=1}^{n} k^{3}$ in terms of n.
Use this formula to obtain an expression for $\sum_{k=1}^{n}\left(2 k^{3}+k^{2}-k\right)$ in terms of n.
Express your answer in fully factorised form.
Hence evaluate

$$
\begin{equation*}
(2+1-1)+(16+4-2)+\ldots+(2000+100-10) \tag{2}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	2	2.5	2		2.5 .8		1997 SY1 Q
	6	3.5	6		3.5 .8	3.5 .6	
	2	3.5		2	3.5 .8		

$$
\begin{align*}
& \sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2} \\
& =(1 / 2 n(n+1))^{2} \tag{1}\\
& =1 / 4 n^{2}(n+1)^{2} \tag{1}\\
& \sum_{=1}^{n}\left(2 k^{3}+k^{2}-k\right)=\sum_{k=1}^{n} 2 k^{3}+\sum_{k=1}^{n} k^{2}-\sum_{k=1}^{n} k \\
& =2 \sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k^{2}-\sum_{k=1}^{n} k \\
& =\frac{1}{2} n^{2}(n+1)^{2}+\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1) \quad 1 \text { for } \Sigma k^{2} \\
& =\frac{1}{6} n(n+1)\left[3 n^{2}+3 n+2 n+1-3\right] \\
& =\frac{1}{6} n(n+1)\left(3 n^{2}+5 n-2\right) \\
& =\frac{1}{6} n(n+1)(n+2)(3 n-1) \\
& 3 \text { marks for the manipulation, } 1 \text { off for each error (down to } 0 \text {) } \\
& (2+1-1)+(16+4-2)+\ldots+(2000+100-10) \\
& \begin{array}{lr}
=\sum_{k=1}^{10}\left(2 k^{3}+k^{2}-k\right) & 1 \text { for using } n=10 \\
=\frac{1}{6} \times 10 \times 11 \times 12 \times 29=6380 & \mathbf{1} \text { for evaluating }
\end{array}
\end{align*}
$$

The graph above represents the velocity v of the cutting head of a computer controlled milling machine. Positive values of v represent movement to the right.
(a) What is represented, in terms of the movement of the cutting head, by the gradient $\frac{d \nu}{d t}$ of this graph at a time t ?
(b) What is represented by the integral $\int_{0}^{T} v(t) d t$ for some time T ?

The areas marked on the graph have values:

$$
A_{1}=6, \quad A_{2}=13, \quad A_{3}=1
$$

(c) What is the maximum displacement of the cutting head from its starting position and what is the smallest value of t for which this maximum is attained?
(d) What is the maximum acceleration of the cutting head? When this is attained, is the head moving to the right or to the left?
(e) What is the total distance moved by the cutting head for $0 \leqslant t \leqslant 10$?

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	1	1.4	1		1.4 .1		1997 SY1 Q16
(b)	2	1.4	2				
(c)	2	1.4	2		1.4 .1		
(d)	2	1.4		2			
(e)	2	1.4		2			

(b) The integral $\int_{0}^{T} v(t) d t$ represents the distance the head is 1
from its starting point. 1
(c) $A_{1}=-6 ; A_{1}+A_{2}=13-6=7$; 1 for the idea of adding upTotal shaded area is $13-6-1=6$.The maximum displacement is 7 cm and occurs at time $t=8$.1
(d) The maximum acceleration is when the graph is steepest which isbetween $t=4$ and $t=5$.The speed increases by $5 \mathrm{~cm} / \mathrm{s}$ during this timeso the acceleration is $5 \mathrm{~cm} / \mathrm{s}^{2}$.1
At this time the head is moving to the right. 1
(e) The total distance is the sum of the magnitudes of A_{1}, A_{2}, A_{3} 1
i.e. 20 cm 1

A sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=4, a_{n}=3 a_{n-1}-5(n \geqslant 2)$. Prove by induction that

$$
a_{n}=\frac{1}{2}\left(3^{n}+5\right)
$$

for all positive integers n.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	3.5	5		3.5 .6		1997 SY2 Q1

True for $n=1$ since $\frac{1}{2}(3+5)=4\left(=a_{1}\right)$.

Suppose

$$
a_{k}=\frac{1}{2}\left(3^{k}+5\right)
$$

then

$$
\begin{align*}
a_{k+1} & =3 \times \frac{1}{2}\left(3^{k}+5\right)-5 \tag{1}\\
& =\frac{1}{2} \times 3^{k+1}+\frac{15}{2}-5=\frac{1}{2} \times 3^{k+1}+\frac{5}{2} \\
& =\frac{1}{2}\left(3^{k+1}+5\right)
\end{align*}
$$

So the result is true for $n=1$, and is true for $n=k+1$ whenever it is true for $n=k$. So it is true for all $n \geqslant 1$.

Use the Euclidean Algorithm to find integers x, y such that

$$
29 x+113 y=1
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	2	3.5	2		3.5 .10		1997 SY2 Q2
	2	3.5		2	3.5 .11		

$$
\begin{align*}
113 & =3 \times 29+26 \\
29 & =1 \times 26+3 \\
26 & =8 \times 3+2 \\
3 & =1 \times 2+1
\end{align*}
$$

So

$$
\begin{align*}
1 & =3-1 \times(26-8 \times 3)=9 \times 3-1 \times 26 \tag{1}\\
& =9(29-26)-26=9 \times 29-10 \times 26 \\
& =9 \times 29-10(113-3 \times 29) \\
& =39 \times 29-10 \times 113
\end{align*}
$$

So $x=39, y=-10$ satisfy request.

The lines L_{1} and L_{2} have equations

$$
\begin{aligned}
& L_{1}: \frac{x-2}{2}=\frac{y+5}{3}=\frac{z-5}{-1} \\
& L_{2}: \frac{x+6}{4}=\frac{y+2}{1}=\frac{z+4}{2}
\end{aligned}
$$

Determine whether or not L_{1} and L_{2} intersect.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	6	3.1	6		3.1 .9		1997 SY2 Q3

$$
\begin{aligned}
& L_{1}: x=2 s+2, y=3 s-5, z=-s+5 \\
& L_{2}: x=4 t-6, y=t-2, z=2 t-4
\end{aligned}
$$

$$
\mathbf{1}
$$

$$
\mathbf{1}
$$

Equating the x and the y coordinates gives

$$
\begin{equation*}
2 s+2=4 t-6, \quad 3 s-5=t-2 \tag{1}
\end{equation*}
$$

Solving these

$$
\begin{gather*}
s-2 t=-4 \\
3 s-t=3
\end{gathered} \Rightarrow \quad \begin{gathered}
3 s-6 t=-12 \tag{1}\\
3 s-t=3 \\
\Rightarrow t=3, s=2
\end{gather*}
$$

Substituting back gives $z=3$ for L_{1} and $z=2$ for L_{2}
so the lines do not intersect.

It is given that $T_{\alpha}=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right)$, where $\alpha \in \mathbf{R}$.
(i) Evaluate $\operatorname{det} T_{a}$.
(ii) Show that $T_{\alpha} T_{\beta}$ is a rotation matrix.
(iii) Express $T_{\alpha} T_{\beta} T_{\alpha}$ as T_{γ} for some γ.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(i)	1	3.2	1		3.2 .4		1997 SY2 Q5
(ii)	3	3.2	3		3.2 .9		
(iii)		3.2			3.2.		

(i)

$$
\operatorname{det} T_{\alpha}=-\cos ^{2} \alpha-\sin ^{2} \alpha
$$

1
(ii)

$$
\begin{aligned}
T_{\alpha} T_{\beta} & =\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta-\cos \beta
\end{array}\right) \\
& =\binom{\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos \alpha \sin \beta-\sin \alpha \cos \beta}{\sin \alpha \cos \beta-\cos \alpha \sin \beta \sin \alpha \sin \beta+\cos \alpha \cos \beta} \\
& =\left(\begin{array}{c}
\cos (\alpha-\beta)-\sin (\alpha-\beta) \\
\sin (\alpha-\beta) \\
\cos (\alpha-\beta)
\end{array}\right) \\
& =R_{\alpha-\beta}
\end{aligned}
$$

(iii)

$$
\begin{align*}
T_{a} T_{\beta} T_{a} & =\left(\begin{array}{cc}
\cos (\alpha-\beta) & -\sin (\alpha-\beta) \\
\sin (\alpha-\beta) & \cos (\alpha-\beta)
\end{array}\right)\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha-\cos \alpha
\end{array}\right) \tag{1}\\
& =\left(\begin{array}{cc}
\cos (2 \alpha-\beta) & \sin (2 \alpha-\beta) \\
\sin (2 \alpha-\beta)-\cos (2 \alpha-\beta)
\end{array}\right) \tag{1}\\
& =T_{2 \alpha-\beta}
\end{align*}
$$

(a) Let $M=\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$ and $N=\left(\begin{array}{ll}c & d \\ d & c\end{array}\right)$, where a, b, c and $d \in \mathbf{R}$.

Find $M N$ and, by considering determinants, derive the identity

$$
\begin{equation*}
\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)=(a c+b d)^{2}-(a d+b c)^{2} \tag{3}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	3.2	3		3.2 .7		1997 SY2 Q9

(a)

$$
M N=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)\left(\begin{array}{ll}
c & d \\
d & c
\end{array}\right)=\left(\begin{array}{ll}
a c+b d & a d+b c \\
b c+a d & b d+a c
\end{array}\right)
$$

Since $\operatorname{det} M \operatorname{det} N=\operatorname{det} M N$ we have

$$
\begin{equation*}
\left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right)=(a c+b d)^{2}-(a d+b c)^{2} \tag{1}
\end{equation*}
$$

The points $A(1,1,0), B(-1,1,0), C(-1,-1,0)$, and $D(1,-1,0)$ are the corners of the square base of a pyramid whose four sloping faces are equilateral triangles. The apex, T, of the pyramid is the point $(0,0, t)$, where $t>0$.

(a) Show that $t=\sqrt{2}$.
(b) Obtain an equation of the plane containing the triangle $A D T$.
(c) The angle between two faces is defined to be the acute angle between their normals.
Find:
(i) the angle between two adjacent triangular faces;
(ii) the angle between a triangular face and the base of the pyramid.
(d) The line L through the origin perpendicular to the face $A D T$ meets $A D T$ at G. Find an equation for L and hence, or otherwise, obtain the coordinates of G.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2		2				1997 SY2 Q10
(b)	4	3.1	4		3.1 .7		
(c)(i)	2	3.1		2	3.1 .8		
(c)(ii)	3	3.1		3	3.1 .8		
(d)	4	3.1		4	3.1 .9		

(a)

$$
|A D|=2, \quad|A T|=\sqrt{1+1+t^{2}}
$$

so require $4=2+t^{2}$, i..e. $t^{2}=2$ and so $t=\sqrt{2}$.
(b) A normal to the plane is

$$
\begin{gathered}
\overrightarrow{D A} \times \overrightarrow{D T} \\
=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 2 & 0 \\
-1 & 1 & \sqrt{2}
\end{array}\right|=2 \sqrt{2} \mathbf{i}+2 \mathbf{k}
\end{gathered}
$$

So an equation of the plane is

$$
\sqrt{2} x+z=k \quad \text { (for some } k \text {) }
$$

Since $(0,0, \sqrt{2})$ lies on plane, $k=\sqrt{2}$, so equation is

$$
\begin{equation*}
\sqrt{2} x+z=\sqrt{2} \tag{1}
\end{equation*}
$$

(c) (i) A normal to the plane $A B T$ is

$$
\overrightarrow{A B} \times \overrightarrow{A T}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{1}\\
-2 & 0 & 0 \\
-1 & -1 & \sqrt{2}
\end{array}\right|=2 \sqrt{2} \mathbf{j}+2 \mathbf{k}
$$

so the angle, θ, between the planes is given from

$$
\begin{align*}
\sqrt{3} \times \sqrt{3} \cos \theta= & (2 \sqrt{2} \mathbf{i}+2 \mathbf{k}) \cdot(2 \sqrt{2} \mathbf{j}+2 \mathbf{k})=1 \\
& \Rightarrow \theta=\cos ^{-1}\left(\frac{1}{3}\right) \tag{1}
\end{align*}
$$

(ii) Consider the angle between $A D T$ and base. Normals are $2 \sqrt{2} \mathbf{i}+2 \mathbf{k}$ (or $\sqrt{2} \mathbf{i}+\mathbf{k}$) and \mathbf{k}, so the angle ϕ satisfies

$$
\begin{gather*}
\sqrt{3} \times 1 \cos \phi=(\sqrt{2} \mathbf{i}+\mathbf{k}) \cdot \mathbf{k}=1 \\
\Rightarrow \quad \phi=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)
\end{gather*}
$$

(d) Equation of L is

$$
\begin{equation*}
\frac{x-0}{\sqrt{2}}=\frac{y-0}{0}=\frac{z-0}{1}(=s) \tag{1}
\end{equation*}
$$

so a general point on L is

$$
\begin{equation*}
x=\sqrt{2} s, \quad y=0, \quad z=s \tag{1}
\end{equation*}
$$

This lies on the face $A D T$, which has equation $\sqrt{2} x+z=\sqrt{2}$, if

$$
\begin{gathered}
2 s+s=\sqrt{2} \\
\text { i.e. } s=\frac{\sqrt{2}}{3} \text { so } G \text { is the point }\left(\frac{2}{3}, 0, \frac{\sqrt{2}}{3}\right)
\end{gathered}
$$

Differentiate

$$
\begin{equation*}
g(x)=\frac{\sin x}{1+\cos x}, \quad-\pi<x<\pi \tag{3}
\end{equation*}
$$

and simplify your answer.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	3	1.2	3		1.2 .4		1998 SY1 Q1

$$
\begin{array}{rlr}
g(x) & =\frac{\sin x}{1+\cos x} & \\
g^{\prime}(x) & =\frac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^{2}} & \mathbf{1} \text { method (quotient) } \\
& =\frac{\cos x+1}{(1+\cos x)^{2}} & \\
& =\frac{1}{1+\cos x} &
\end{array}
$$

Use the substitution $u=t+1$ to find

$$
\begin{equation*}
\int_{0}^{8} \frac{t+2}{\sqrt{ }(t+1)} d t \tag{5}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	$1 \cdot 3$	5		$1 \cdot 3 \cdot 4$		1998 SY 1 Q3

$$
\left.\begin{array}{rl}
u=t+1 & \text { so }\left\{\begin{array}{l}
t=8 \Rightarrow u=9 \\
t=0 \Rightarrow u=1
\end{array}\right. \\
& d u=d t
\end{array}\right\} \begin{aligned}
\int_{0}^{8} \frac{t+2}{\sqrt{(t+1)} d t} & =\int_{1}^{9} \frac{u+1}{\sqrt{u}} d u \\
& =\int_{1}^{9}\left\{u^{1 / 2}+u^{-1 / 2}\right\} d u \\
& =\left[\frac{2}{3} u^{\frac{2}{3}}+2 u^{\frac{1}{2}}\right]_{1}^{9} \\
& =\left[\frac{2}{3} \times 27+2 \times 3\right]-\left[2 \frac{2}{3}\right] \\
& =21 \frac{1}{3} .
\end{aligned}
$$

Use calculus to find all the values of x for which the function

$$
\begin{equation*}
f(x)=(1+x)^{2} e^{-x}, \quad x \in \mathbf{R} \tag{5}
\end{equation*}
$$

is increasing.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	1.2		5	1.2 .8		1998 SY 1 Q6

$$
\begin{aligned}
& f(x)=(1+x)^{2} e^{-x} \\
& f^{\prime}(x)=2(1+x) e^{-x}-(1+x)^{2} e^{-x}
\end{aligned}
$$

>0 for $f(x)$ to be increasing.

$$
(1+x)[2-(1+x)] e^{-x}>0
$$

$$
(1+x)(1-x) e^{-x}>0
$$

$$
1 \text { for factorising }
$$

$$
\begin{equation*}
x^{2}<1 \quad \Rightarrow-1<x<1 \tag{1}
\end{equation*}
$$

$(-1 \leqslant x \leqslant 1$ is acceptable)

Verify that $z=1+i$ is a solution of the equation

$$
\begin{equation*}
z^{3}+16 z^{2}-34 z+36=0 \tag{3}
\end{equation*}
$$

Write down a second solution of the equation.
Hence find constants α and β such that

$$
z^{3}+16 z^{2}-34 z+36=\left(z^{2}-\alpha z+\alpha\right)(z+\beta)
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	7	2.3	4	3	2.3 .9		1998 SY1 Q7

$(1+i)^{3}+16(1+i)^{2}-34(1+i)+36$

$$
\begin{array}{lr}
=(-2+2 i)+16(2 i)-34-34 i+36 & 1 \text { for }(\mathbf{1}+\boldsymbol{i})^{2} \\
1 \text { for }(1+i)^{3} \\
=0+0 i & 1 \text { for rest } \\
& 1
\end{array}
$$

(1-i) is also a root.
Factor is

$$
\begin{aligned}
{[z-(1+i)][z-(1-i)] } & =[(z-1)-i][(z-1)+i] \mathbf{1} \text { for method } \\
& =(z-1)^{2}+1=z^{2}-2 z+2
\end{aligned}
$$

So $z^{3}+16 z^{2}-34 z+36=\left(z^{2}-2 z+2\right)(z+18)$
i.e. $\alpha=2, \beta=18$.

1 for values
(trial and error is not valid)

Show that

$$
\begin{equation*}
\int_{0}^{t} x \sin (\pi x) d x=\frac{1}{\pi^{2}} \sin (\pi t)-\frac{t}{\pi} \cos (\pi t) . \tag{4}
\end{equation*}
$$

Use this result to find the exact value of $\int_{0}^{1 / 2} x \sin (\pi x) d x$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	4	2.2	5		2.2 .2		1998 SY1 Q8

$\int_{0}^{t} x \sin (\pi x) d x$

$$
\begin{array}{ll}
=\left[x \int \sin (\pi x) d x\right]_{0}^{t}-\left[\iint \sin \pi x d x . d x\right]_{0}^{t} & 1 \text { method (parts) } \\
=\left[-\frac{x}{\pi} \cos (\pi x)\right]_{0}^{t}-\left[-\frac{1}{\pi} \int \cos (\pi x) d x\right]_{0}^{t} & 1 \text { for } \int \sin \pi x d x \\
=\left[-\frac{x}{\pi} \cos (\pi x)\right]_{0}^{t}-\left[-\frac{1}{\pi^{2}} \sin (\pi x)\right]_{0}^{t} & 1 \text { for } \int \cos \pi x d x \\
=-\frac{t}{\pi} \cos \pi t+\frac{1}{\pi^{2}} \sin \pi t & \\
=\frac{1}{\pi^{2}} \sin (\pi t)-\frac{t}{\pi} \cos (\pi t) .1 \text { for final step - evidence needed } \\
\quad \int_{0}^{1 / 2} x \sin (\pi x) d x=\frac{1}{\pi^{2}} & 1 \text { for finishing }
\end{array}
$$

Express $\frac{1}{(2 x-1)(2 x+1)}$ in partial fractions.

Deduce that

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}=\frac{1}{2}\left(1-\frac{1}{2 n+1}\right) \tag{2}
\end{equation*}
$$

Evaluate

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+1)} . \tag{1}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A / B	Main	Additional	Source
	5	2.4	2	3	2.4 .7	1.1 .6	1998 SY1 Q9

$$
\begin{align*}
\frac{1}{(2 x-1)(2 x+1)} & =\frac{A}{2 x-1}+\frac{B}{2 x+1} \\
1 & =A(2 x+1)+B(2 x-1) \\
\Rightarrow A & =\frac{1}{2}, B=-\frac{1}{2} \tag{1}
\end{align*}
$$

1 method

Thus $\quad \frac{1}{(2 x-1)(2 x+1)}=\frac{1}{2(2 x-1)}-\frac{1}{2(2 x+1)}$

$$
\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}
$$

$$
=\left[\frac{1}{2(2 n-1)}-\frac{1}{2(2 n+1)}\right]+\left[\frac{1}{2(2 n-3)}-\frac{1}{2(2 n-1)}\right]+\ldots+\left[\frac{1}{2}-\frac{1}{6}\right] \quad \mathbf{1} \text { for listing }
$$

$$
=\frac{1}{2}-\frac{1}{2(2 n+1)}
$$

$$
=\frac{1}{2}\left[1-\frac{1}{2 n+1}\right]
$$

$$
\rightarrow \frac{1}{2} \text { as } n \rightarrow \infty \text {. }
$$

A car is travelling along a straight road at a constant velocity of $19 \mathrm{~ms}^{-1}$. Spotting that the road is blocked some distance ahead by a fallen tree, the driver brakes immediately and brings the car to a complete stop T seconds later. The car's acceleration t seconds after the brakes are applied is $a(t) \mathrm{ms}^{-2}$, where

$$
a(t)=-\frac{3}{2} \sqrt{4+t}, \quad 0 \leqslant t \leqslant T .
$$

(a) Show that $T=5$.
(b) Calculate the distance travelled by the car during the 5 seconds that it takes to come to a stop.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	1.2	4		1.2 .8		1998 SY1 Q10
(b)	3	1.2	3		1.2 .8		

(a) $\quad a(t)=-\frac{3}{2} \sqrt{4+t}$ so

$$
\begin{align*}
v(t) & =\int a(t) d t=\int-\frac{3}{2}(4+t)^{\frac{1}{2}} d t \\
& =-(4+t)^{\frac{3}{2}}+c \tag{1}
\end{align*}
$$

Since $v(0)=19, c=27$
and hence

$$
\begin{equation*}
v(t)=27-(4+t)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Stops when $v(t)=0$ i.e. $(4+T)^{\frac{3}{2}}=27 \Rightarrow 4+T=9 \Rightarrow T=5$.
(b)

$$
\begin{gather*}
s(t)=\int v(t) d t=27 t-\frac{2}{5}(4+t)^{\frac{5}{2}}+c^{\prime} \\
s(0)=0 \Rightarrow c^{\prime}=\frac{64}{5} \tag{1}\\
s(5)=135-\frac{2}{5}(9)^{\frac{5}{2}}+\frac{64}{5} \\
=135-\frac{422}{5}=50.6 \tag{1}
\end{gather*}
$$

In a town with population 40000 , a 'flu virus spread rapidly last winter. The percentage P of the population infected t days after the initial outbreak satisfies the differential equation

$$
\frac{d P}{d t}=k P, \quad \text { where } k \text { is a constant. }
$$

(a) If 100 people are infected initially, find, in terms of k, the percentage infected t days later.
(b) Given that 500 people have 'flu after 7 days, how many more are likely to have contracted the virus after 10 days?

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	2.2	4		2.2 .5		1998 SY1 Q12
(b)	3	2.2		3	2.2 .5		1998 SY1 Q12

(a)

$$
\begin{aligned}
& \int \frac{d P}{P}=\int k d t \\
& \ln P=k t+c \\
& t=0, P=0.25 \Rightarrow c=\ln 0.25 \\
& \ln (P \div 0.25)=k t \\
& 4 P=e^{k t} \Rightarrow P=\frac{1}{4} e^{k t}
\end{aligned}
$$

(b) $t=7, P=1.25$

$$
\begin{gather*}
e^{7 k}=5 \Rightarrow e^{k}=5^{\frac{1}{4}} \quad \mathbf{1} \text { for } k \text { (alternatives possible) } \\
P=\frac{1}{4}\left(5^{\frac{1}{1}}\right)^{10} \approx 2.49 \ldots \tag{1}\\
2.49 \% \text { of } 40000=996.6 \ldots
\end{gather*}
$$

This would be an increase of about 497 .

Let the function f be given by

$$
\begin{equation*}
f(x)=\frac{2 x^{3}-7 x^{2}+4 x+5}{(x-2)^{2}}, \quad x \neq 2 \tag{1}
\end{equation*}
$$

(a) The graph of $y=f(x)$ crosses the y-axis at ($0, a$). State the value of a.
(b) For the graph of $f(x)$
(i) write down the equation of the vertical asymptote,
(ii) show algebraically that there is a non-vertical asymptote and state its equation.
(c) Find the coordinates and nature of the stationary point of $f(x)$.
(d) Show that $f(x)=0$ has a root in the interval $-2<x<0$.
(e) Sketch the graph of $y=f(x)$. (You must include on your sketch the results obtained in the first four parts of this question.)
(2)

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	1	1.4	1		1.4 .9		1998 SY1 Q13
(b)	4	1.4	4		1.4 .9		
(c)	4	1.4	4		1.4 .9		
(d)	1	1.4	1		1.4 .9		
(e)	2	1.4	2		1.4 .9		

$$
f(x)=\frac{2 x^{3}-7 x^{2}+4 x+5}{(x-2)^{2}}
$$

(a) $x=0 \Rightarrow y=\frac{5}{4} a=\frac{5}{4}$
(b) (i) $x=2$
(ii) After division, the function can be expressed in quotient/remainder form:-

$$
f(x)=2 x+1+\frac{1}{(x-2)^{2}}
$$

1 for method
1 for accuracy
Thus the line $y=2 x+1$ is a slant asymptote.
(c) From (b), $f^{\prime}(x)=2-\frac{2}{(x-2)^{3}}$.

1 for any correct derivative
Turning point when

$$
\begin{align*}
& 2-\frac{2}{(x-2)^{3}}=0 \\
&(x-2)^{3}=1 \\
& x-2=1 \Rightarrow x=3 \tag{1}\\
& f^{\prime \prime}(x)=\frac{6}{(x-2)^{4}}>0 \text { for all } x
\end{align*}
$$

The stationary value at $(3,8)$ is a minimum turning point.
1 for \boldsymbol{y} value
(d) $f(-2)=\frac{-16-28-8+5}{(-4)^{2}}<0$;
$f(0)=\frac{5}{4}>0$.
1 for showing change of sign
Hence a root between -2 and 0 .
(e)

1 for general shape
1 for showing asymptotes

The matrices A and B are defined by

$$
A=\left(\begin{array}{lll}
1 & -1 & 3 \\
2 & -1 & 9 \\
4 & -8 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
71 & a & -6 \\
34 & b & -3 \\
-12 & c & 1
\end{array}\right)
$$

where a, b and c are constants.
(a) Find the matrix $B-3 A$.
(b) (i) Verify that $A B=I$, where I is the 3×3 identity matrix, provided that

$$
\begin{array}{r}
a-b+3 c=0 \\
2 a-b+9 c=1 \\
4 a-8 b+c=0 \tag{3}
\end{array}
$$

(ii) Use Gaussian elimination to find the values of a, b and c for which $A B=I$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2	1.5	2		1.5 .1		1998 SY1 Q14
(b)	7	1.5	7		1.5 .4		

$A=\left(\begin{array}{lll}1 & -1 & 3 \\ 2 & -1 & 9 \\ 4 & -8 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}71 & a & -6 \\ 34 & b & -3 \\ -12 & c & 1\end{array}\right)$
(a)

$$
\begin{align*}
B-3 A & =\left(\begin{array}{rrr}
71 & a & -6 \\
34 & b & -3 \\
-12 & c & 1
\end{array}\right)-\left(\begin{array}{ccc}
3 & -3 & 9 \\
6 & -3 & 27 \\
12 & -24 & 3
\end{array}\right) \text { 1 for matrix } \mathbf{3 A} \\
& =\left(\begin{array}{ccc}
68 & a+3 & -15 \\
28 & b+3 & -30 \\
-24 & c+24 & -2
\end{array}\right) \tag{1}
\end{align*}
$$

(b) (i)

$$
\begin{align*}
& \left(\begin{array}{lll}
1 & -1 & 3 \\
2 & -1 & 9 \\
4 & -8 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
71 & a & -6 \\
34 & b & -3 \\
-12 & c & 1
\end{array}\right) \tag{1}\\
= & \left(\begin{array}{ccc}
1 & a-b+3 c & 0 \\
0 & 2 a-b+9 c & 0 \\
0 & 4 a-8 b+c & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{align*}
$$

Provided

$$
\begin{array}{r}
a-b+3 c=0 \\
2 a-b+9 c=1 \tag{1}\\
4 a-8 b+c=0
\end{array}
$$

(ii)

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & -1 & 3 & 0 \\
2 & -1 & 9 & 1 \\
4 & -8 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & -1 & 3 & 0 \\
0 & 1 & 3 & 1 \\
0 & -4 & -11 & 0
\end{array}\right) \quad \begin{array}{r}
r_{2}^{\prime}=r_{2}-2 r_{1} \\
r_{3}^{\prime}=r_{3}-4 r_{1}
\end{array} \\
& \left(\begin{array}{ccc|c}
1 & -1 & 3 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 4
\end{array}\right) \quad r_{3}^{\prime \prime}=r_{3}^{\prime}+4 r_{2}^{\prime} \\
& c
\end{aligned}
$$

(a) Find the derivative of the function $g(x)=\sqrt{1-x^{2}}$ and hence, or otherwise, obtain the indefinite integral

$$
\begin{equation*}
\int \frac{x}{\sqrt{1-x^{2}}} d x \tag{3}
\end{equation*}
$$

(b) Use integration by parts to show that

$$
\begin{equation*}
\int f(x) d x=x f(x)-\int x f^{\prime}(x) d x \tag{2}
\end{equation*}
$$

where f is a differentiable function with derivative f^{\prime}.
(c) The diagram below represents the graph of $y=\sin ^{-1} x$. Use the previous results to calculate the area of the shaded region which lies between $x=0$ and $x=\frac{\sqrt{3}}{2}$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	1.2	3		1.2 .4	1.3 .4	1998 SY1 Q15
(b)	2	2.2		2	2.2 .2		1998 SY1 Q15
(c)	4	1.3		4	1.3 .6		1998 SY1 Q15

(a)

$$
\begin{aligned}
& g(x)=\left(1-x^{2}\right)^{\frac{1}{2}} \\
& g^{\prime}(x)=\frac{1}{2}(-2 x)\left(1-x^{2}\right)^{-1 / 2}=\frac{-x}{\sqrt{1-x^{2}}} \quad 1 \text { for using chain rule } \\
& 1 \text { for accuracy }
\end{aligned}
$$

$$
\therefore \int \frac{x}{\sqrt{1-x^{2}}} d x=-\sqrt{1-x^{2}}+c \quad \quad 1 \text { for integral }
$$ (c not essential)

(b)

$$
\begin{aligned}
\int 1 . f(x) d x & =f(x) \int 1 \cdot d x-\int f^{\prime}(x) \cdot x d x & 1 \text { for introducing ' } 1 \text { ' } \\
& =x f(x)-\int x f^{\prime}(x) d x & 1 \text { for accuracy }
\end{aligned}
$$

(c)

$$
\begin{array}{rlr}
\int_{0}^{\frac{\sqrt{3}}{2}} \sin ^{-1} x d x & =\left[x \sin ^{-1} x\right]_{0}^{\frac{\sqrt{3}}{2}}-\int_{0}^{\frac{\sqrt{3}}{2}} \frac{x}{\sqrt{1-x^{2}}} d x & \begin{array}{r}
1 \text { for using result from (b) } \\
1 \text { for derivative of } \sin ^{-1} x
\end{array} \\
& =\left[\frac{\sqrt{3}}{2} \frac{\pi}{3}\right]+\left[\sqrt{1-x^{2}}\right]_{0}^{\frac{\sqrt{3}}{2}} & 1 \text { for using part (a) } \\
& =\frac{\pi \sqrt{3}}{6}+\frac{1}{2}-1 & 1 \text { for replacing limits } \\
& =\frac{1}{6}(\pi \sqrt{ } 3-3) &
\end{array}
$$

(a) A toy manufacturer is planning to launch a new product on the market. The Sales Manager believes that the recurrence relation

$$
u_{n}=u_{n-1}+5000 \quad n=2,3,4, \ldots
$$

provides a reasonable estimate, $£ u_{n}$, of the profit that will be made from sales of this product during the nth month after it is launched.

Given that $u_{1}=20000$, obtain simple expressions for u_{n} and $\sum_{k=1}^{n} u_{k}$ in terms of n.

Calculate the estimated profit that will be made from sales during the first year following the launch of the product.
(b) The Managing Director objects to the Sales Manager's formula and she insists that the recurrence relation

$$
\begin{equation*}
v_{n}=0.9 v_{n-1}+5000 \quad n=2,3,4, \ldots \tag{2}
\end{equation*}
$$

should be used to produce a more cautious forecast of the monthly profits. Express v_{2}, v_{3} and v_{4} in terms of v_{1}.
By recognising a connection with a geometric series, deduce that if $v_{1}=20000$ then

$$
\begin{equation*}
v_{n}=50000-30000(0.9)^{n-1} \quad n=1,2,3, \ldots \tag{4}
\end{equation*}
$$

Show that $v_{n}<u_{7}$ for all n.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	2.4	4		2.4 .2		1998 SY1 Q16
(b)	6	2.4	2	4	2.4 .3		1998 SY1 Q16

(a)

$$
\begin{array}{rrr}
u_{1} & =20000 ; u_{2}=25000 ; u_{3}=30000 & \\
u_{n} & =20000+5000(n-1) & \\
& =5000(n+3) & 1 \text { for } u_{n} \\
\sum_{k=1}^{n} u_{k}=\frac{n}{2}[40000+5000(n-1)] & 1 \text { for method } \\
& =2500 n(n+7) & 1 \text { for result }
\end{array}
$$

When $n=12$, this formula would give an estimate of the total profits of $£ 570000$.
(b)

$$
\begin{array}{rr}
v_{n}=0.9 v_{n-1}+5000 & \\
v_{2} & =5000+0.9 v_{1} \\
v_{3} & =5000(1+0.9)+0.9^{2} v_{1} \\
v_{4} & =5000\left(1+0.9+0.9^{2}\right)+0.9^{3} v_{1}
\end{array} \quad 1 \text { for } v_{2} \text { and } v_{3} \quad 1 \text { for } v_{4}
$$

As n gets bigger, v_{n} increases and approaches a limit of 50000 from below.
From part (a), $u_{7}=5000(7+3)=50000$.
Thus $v_{n}<u_{7}$ for all n.
1 for showing

Let

$$
A=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right) .
$$

Use induction to prove that, for all positive integers n,

$$
A^{n}=\left(\begin{array}{cc}
1 & 0 \\
1 & -2^{n} \\
2^{n}
\end{array}\right)
$$

Determine whether or not this formula for A^{n} is also valid when $n=-1$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	6	3.5	6		3.5 .6	3.2 .2	1998 SY2 Q1

True for $n=1$, since $\left(\begin{array}{cc}1 & 0 \\ 1-2 & 2\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right)$.
Suppose true for $n=k \geqslant 1$. Then

$$
A^{k}=\left(\begin{array}{cc}
1 & 0 \\
1-2^{k} & 2^{k}
\end{array}\right) \quad 1 \text { for the inductive hypothesis }
$$

Then

$$
\begin{aligned}
A^{k+1} & =A \cdot A^{k}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1-2^{k} & 2^{k}
\end{array}\right) \quad \mathbf{1} \text { for this statement } \\
& =\left(\begin{array}{cc}
1 & 0 \\
-1+2-2^{k+1} & 2^{k+1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
1-2^{k+1} & 2^{k+1}
\end{array}\right)
\end{aligned}
$$

So the result is true for $n=1$, and is true for $n=k+1$ whenever it is true for $n=k$. So it is true for all $n \geqslant 1$.

$$
\begin{aligned}
A^{-1} & =\frac{1}{2}\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
1 & -2^{-1} \\
2^{-1}
\end{array}\right),
\end{aligned}
$$

so the formula does hold for $n=-1$.

Let A, B, C be the points $(2,1,0),(3,3,-1),(5,0,2)$ respectively.
Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
Hence or otherwise obtain an equation for the plane containing A, B and C.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	3.1	5		3.1 .7	3.1 .4	SY 2 1998 Q2

$$
\begin{align*}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & -1 \\
3 & -1 & 2
\end{array}\right| \tag{1}\\
& =3 \mathbf{i}-5 \mathbf{j}-7 \mathbf{k} \tag{2}
\end{align*}
$$

Equation of the plane is of the form

$$
3 x-5 y-7 z=k
$$

But $A(2,1,0)$ lies in the plane, so

$$
6-5-0=k
$$

Equation of plane is $3 x-5 y-7 z=1$.

Show that

$$
\operatorname{det}\left(\begin{array}{ccc}
2 & 2 k & 1 \tag{3}\\
1 & k-1 & 1 \\
2 & 1 & k+1
\end{array}\right)
$$

has the same value for all values of k.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	3	3.2	3		3.2 .4		

$$
\begin{align*}
& \operatorname{det}\left(\begin{array}{ccc}
2 & 2 k & 1 \\
1 & k-1 & 1 \\
2 & 1 & k+1
\end{array}\right) \\
& =2\left(k^{2}-1-1\right)-2 k(k+1-2)+1(1-2 k+2) \\
& =-1
\end{align*}
$$

Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{rrr}1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1\end{array}\right)$.
(i) Determine whether or not $A B=B A$.
(ii) Verify that $A^{2}+3 B^{2}=12 I$, where I is the 3×3 identity matrix.
(iii) Find $A B, A B^{2}$ and $A B^{3}$ as multiples of A, and make a conjecture about a general result for $A B^{n}$.
Use induction to prove your conjecture.
(iv) It is given that B is invertible, with inverse of the form

$$
B^{-1}=\left(\begin{array}{lll}
x & y & z \\
z & x & y \\
y & z & x
\end{array}\right)
$$

Write down a system of linear equations which x, y and z must satisfy, and hence find the values of x, y and z.
(v) Verify that $B^{2}-B$ is a multiple of I, and hence find B^{-1} in the form $c B+d I$ where c, d are real numbers. Hence check your answer to (iv).

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(i)	1	3.2	1		3.2 .2		SY2 1998 Q7
(ii)	1	3.2	1		3.2 .2		
(iii)	6	3.5	2	4	3.5 .6	3.2 .2	
(iv)	4	1.5	4		1.5 .4		
(v)	3	3.2		3	3.2 .2		

(a)

$$
A B=\left(\begin{array}{lll}
-1 & -1 & -1 \tag{1}\\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right)=B A
$$

(b)

$$
A^{2}+3 B^{2}=\left(\begin{array}{lll}
3 & 3 & 3 \\
3 & 3 & 3 \\
3 & 3 & 3
\end{array}\right)+3\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)=12 I
$$

(c)

$$
\begin{equation*}
A B=-A, A B^{2}=A, A B^{3}=-A \tag{1}
\end{equation*}
$$

so conjecture is

$$
\begin{equation*}
A B^{n}=(-1)^{n} A \tag{1}
\end{equation*}
$$

Conjecture is true for $n=1$ since

$$
\begin{equation*}
A B^{1}=A B=-A=(-1)^{1} A \tag{1}
\end{equation*}
$$

1
Suppose true for $n=k$: $A B^{k}=(-1)^{k+1} A$
Then

$$
\begin{aligned}
A B^{k+1} & =A B^{k} \cdot B=(-1)^{k} A \cdot B \\
& =(-1)^{k} \cdot(-1) A=(-1)^{k+1} A
\end{aligned}
$$

so result is true for $n=k+1$. (So result follows by induction.)
(d) Require

$$
\begin{align*}
x-y-z & =1 \\
-x+y-z & =0 \\
-x-y+z & =0 \tag{1}\\
\left(\begin{array}{ccc|c}
1 & -1 & -1 & 1 \\
-1 & 1 & -1 & 0 \\
-1 & -1 & 1 & 0
\end{array}\right) & \rightarrow\left(\begin{array}{ccc|c}
1 & -1 & -1 & 1 \\
0 & 0 & -2 & 1 \\
0 & -2 & 0 & 1
\end{array}\right) \tag{1}
\end{align*}
$$

which leads to $y=z=-\frac{1}{2}$ and $x=0$.
(e)

$$
\begin{gathered}
B^{2}-B=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)-\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)=2 I \\
\text { So } B(B-I)=2 I \\
\text { thus } B^{-1}=\frac{1}{2}(B-I) \\
=\frac{1}{2}\left(\begin{array}{ccc}
0 & -1 & -1 \\
-1 & 0 & -1 \\
-1 & -1 & 0
\end{array}\right)
\end{gathered}
$$

(i) Use the Euclidean Algorithm to find integers x, y such that

$$
195 x+239 y=1
$$

Hence write down positive integers a, b such that

$$
\operatorname{det}\left(\begin{array}{cc}
195 & 239 \tag{6}\\
a & b
\end{array}\right)=1
$$

(ii) Let u, v, w be positive integers. For each of the following, decide whether the statement is true or false. Where false, give a counterexample; where true, give a proof.
(a) If u and v both divide w then $u+v$ divides w.
(b) If u divides both v and w then u divides $v+w$.
(c) If u divides v and v divides w then u divides $v+w$.

Write down the converse of statement (b), and determine whether or not this converse is true.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(i)	6	3.5	2	4	3.5 .11	3.5 .10	SY 2 1998 Q9
(ii)	7	2.5	7		2.5 .5	3.5 .3	
	2	3.5	2		3.5 .1		

(a)

$$
\begin{aligned}
239 & =1 \times 195+44 \\
195 & =4 \times 44+19 \\
44 & =2 \times 19+6 \\
19 & =3 \times 6+1
\end{aligned}
$$

Thus

$$
\begin{aligned}
1 & =19-3(44-2 \times 19) \\
& =7(195-4 \times 44)-3 \times 44 \\
& =7 \times 195-31(239-195) \\
& =38 \times 195-31 \times 239
\end{aligned}
$$

so take $x=38, y=-31$.
Thus $a=38, b=31$.
(b) (i) is false
e.g. $u=3, v=4, w=12$
(ii) is true.

1
Suppose $u \mid v$ and $u \mid w$. Then $v=k u, w=l u$ for some integers k, l. So

$$
v+w=(k+l) u
$$

i.e. $u \mid(v+w)$.
(iii) is true.

If $u \mid v$ and $v \mid w$. Then $v=k u, w=l v$ for some integers k, l.
So

$$
v+w=(k+k l) u
$$

Converse of (b) is
If u divides $v+w$ then u divides both v and w.
False: e.g. $u=2, v=w=3$.

Use Gaussian elimination to solve the system of linear equations

$$
\begin{align*}
x+y+z & =0 \\
2 x-y+z & =-1.1 \\
x+3 y+2 z & =0.9 . \tag{5}
\end{align*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	1.5	5		1.5 .4	1.5 .5	1999 SY1 Q1

$$
\begin{aligned}
x+y+z & =0 \\
2 x-y+z & =-1.1 \\
x+3 y+2 z & =0.9
\end{aligned}
$$

$$
\begin{aligned}
x+y+z & =0 \quad 1 \text { method for for Gaussian elimination } \\
-3 y-z & =-1.1 \quad\left(r_{2}^{\prime}=r_{2}-2 r_{1}\right) \\
2 y+z & =0.9 \quad\left(r_{3}^{\prime}=r_{3}-r_{1}\right) \quad \mathbf{1} \text { for this set } \\
x+y+z & =0 \\
-3 y-z & =-1.1 \\
z & =0.5\left(r_{3}^{\prime \prime}=3 r_{3}+2 r_{2}\right) \quad \mathbf{1} \text { for this equation }
\end{aligned}
$$

$$
\text { Hence } z=0.5 \text {; }
$$

$$
y=(1.1-0.5) / 3=0.2
$$

$$
x=-0.2-0.5=-0.7
$$

Let $u_{1}, u_{2}, \ldots, u_{n}, \ldots$ be an arithmetic sequence and $v_{1}, v_{2}, \ldots, v_{n}, \ldots$ be a geometric sequence. The first terms u_{1} and v_{1} are both equal to 45 , and the third terms u_{3} and v_{3} are both equal to 5 .
(a) Find u_{11}.
(b) Given that v_{1}, v_{2}, \ldots is a sequence of positive numbers, calculate $\sum_{n=1}^{\infty} v_{n}$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	2.4	3		2.4 .2		1999 SY1 Q2
(b)	3	2.4	3	(6)	2.4 .3		

(a)

$$
\begin{array}{ll}
u_{3}=2 d & +u_{1}=5 \quad 1 \text { method mark for using formula } \\
2 d & =5-45 \\
d & =-20 \\
u_{11} & =45+10(-20) \\
& =-155
\end{array}
$$

(b)

$$
\begin{array}{rlr}
45 r^{2} & =5 & 1 \text { method mark for strategy } \\
r & =\frac{1}{3} & 1 \text { for value of } r \\
S & =\frac{45}{1-\frac{1}{3}} & 1 \text { for correct substitution } \\
& =67 \frac{1}{2} &
\end{array}
$$

Differentiate the following functions with respect to x, simplifying your answers where possible.
(a) $h(x)=\sin \left(x^{2}\right) \cos (3 x)$.
(b) $y=\frac{\ln (x+3)}{(x+3)}, x>-3$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	1.2	3		1.2 .4		1999 SY1 Q3
(b)	3	1.2	3		1.2 .4	1.2 .5	

(a)

$$
\begin{array}{lr}
h(x)=\sin \left(x^{2}\right) \cos (3 x) & 1 \text { method mark (product rule) } \\
h^{\prime}(x)=2 x \cos \left(x^{2}\right) \cos (3 x)-3 \sin \left(x^{2}\right) \sin (3 x) \quad 1 \text { for first term } \\
1 \text { for second term }
\end{array}
$$

(b)

$$
\begin{array}{rlr}
y & =\frac{\ln (x+3)}{(x+3)} \\
\frac{d y}{d x} & =\frac{\frac{1}{x+3}(x+3)-\ln (x+3) .1}{(x+3)^{2}} & 1 \text { method (quotient) } \\
& =\frac{1 \text { for accuracy }}{(x+3)^{2}} & 1 \text { for simplifying }
\end{array}
$$

Use the substitution $x=4 \sin t$ to evaluate the definite integral

$$
\begin{equation*}
\int_{0}^{2} \frac{x+1}{\sqrt{16-x^{2}}} d x \tag{5}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	2.2		5	2.2 .1		1999 SY1 Q5

$$
\begin{aligned}
x & =4 \sin t \Rightarrow \begin{aligned}
x=0 \Rightarrow t=0 \\
x=2 \Rightarrow t=\frac{\pi}{6}
\end{aligned} \quad 1 \text { for limits } \\
\frac{d x}{d t} & =4 \cos t \\
\int_{0}^{2} \frac{x+1}{\sqrt{16-x^{2}}} d x & =\int_{0}^{\pi / 6} \frac{4 \sin t+1}{\sqrt{16-16 \sin ^{2} t}} 4 \cos t d t \\
& =\int_{0}^{\pi / 6} \frac{4 \sin t+1}{4 \cos t} 4 \cos t d t \quad \mathbf{1} \text { for denominator } \\
& =\int_{0}^{\pi / 6}(4 \sin t+1) d t \\
& =[-4 \cos t+t]_{0}^{\pi / 6} \\
& =-2 \sqrt{3}+4+\frac{\pi}{6} \\
& \approx 1.059
\end{aligned}
$$

(a) Verify that $z=2$ is a solution of the equation $z^{3}-8 z^{2}+22 z-20=0$.
(b) Express $z^{3}-8 z^{2}+22 z-20$ as a product of a linear factor and a quadratic factor with real coefficients. Hence find all the solutions of $z^{3}-8 z^{2}+22 z-20=0$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	1	2.3	1		2.3 .9		1999 SY1 Q7
(b)	4	2.3	4		2.3 .10		

(a)

$$
\begin{aligned}
f(2)= & 2^{3}-8 \times 2^{2}+22 \times 2-20 \\
= & 8-32+44-20=0 . \quad \mathbf{1} \text { for verifying with evidence } \\
& \quad 2 \text { is a root }
\end{aligned}
$$

(b)

$$
z-2 \begin{gathered}
\frac{z^{2}-6 z+10}{z^{3}-8 z^{2}+22 z-20} \quad 1 \text { for divisor } z-2 \\
\frac{z^{3}-2 z^{2}}{-6 z^{2}}+22 z \quad 1 \text { for getting } z^{2}-6 z+10 \\
\frac{-6 z^{2}+12 z}{10 z}-20 \\
\frac{10 z-20}{}
\end{gathered}
$$

$$
z^{3}-8 z^{2}+22 z-20=(z-2)\left(z^{2}-6 z+10\right)
$$

$$
\begin{equation*}
z^{2}-6 z+10=0 \Rightarrow z=\frac{6 \pm \sqrt{36-40}}{2} \tag{1}
\end{equation*}
$$

$$
=3 \pm i
$$

Use integration by parts to obtain

$$
\begin{equation*}
\int_{0}^{3} x \sqrt{x+1} d x \tag{6}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	6	2.2	6		2.2 .2		1999 SY1 Q9

$$
\begin{align*}
& \int_{0}^{3} x(x+1)^{\frac{1}{2}} d x=\left[x \int(x+1)^{\frac{1}{2}} d x\right]^{3}-\int_{0}^{3} 1 \cdot \frac{2}{3}(x+1)^{\frac{3}{2}} d x \quad 1 \text { method (parts) } \\
& \int_{0} x(x+1)^{\frac{1}{2}} d x=\left[x \int(x+1)^{\frac{1}{2}} d x\right]_{0}-\int_{0} 1 \cdot \frac{2}{3}(x+1)^{\frac{1}{2}} d x \quad 1 \text { for attempting } \int(x+1)^{\frac{1}{2}} d x \\
& =\left[x \cdot \frac{2}{3}(x+1)^{\frac{3}{2}}\right]_{0}^{3}-\frac{2}{3} \cdot \frac{2}{5}\left[(x+1)^{\frac{5}{2}}\right]_{0}^{3} \\
& 1 \text { for } \int(x+1)^{\frac{1}{2}} d x \\
& 1 \text { for } \int(x+1)^{\frac{3}{2}} d x \\
& =\left(2 \times 4^{\frac{3}{2}}-0\right)-\frac{4}{15}\left(4^{\frac{5}{2}}-1\right) \\
& =16-8 \frac{4}{15} \tag{1}\\
& =7 \frac{11}{15}
\end{align*}
$$

Let $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right)$. Write down the matrix $A-\lambda I$, where $\lambda \in \mathbf{R}$ and I is the 3×3 identity matrix.
Find the values of λ for which the determinant of $A-\lambda I$ is zero.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	3.2		5	3.2 .4		1999 SY1 Q11

$$
\begin{aligned}
& A-\lambda I=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)-\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\lambda & -1 & 0 \\
-1 & -\lambda & -1 \\
-1 & 1 & -\lambda
\end{array}\right) \\
& \operatorname{det}(A-\lambda I)=(1-\lambda)\left|\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right|-(-1)\left|\begin{array}{ll}
-1 & -1 \\
-1 & -\lambda
\end{array}\right| \quad 1 \text { for method } \\
& =(1-\lambda)\left(\lambda^{2}+1\right)+(\lambda-1) \quad 1 \text { for accuracy } \\
& =(1-\lambda)\left(\lambda^{2}+1-1\right)=(1-\lambda) \lambda^{2} \\
& (1-\lambda) \lambda^{2}=0 \\
& \text { for } \lambda=0 \text { and } 1 \text {. } \\
& 1 \text { for equation } \\
& 1 \text { for answers }
\end{aligned}
$$

The diagram below shows part of the graph of the function f, where

$$
f(x)=\frac{6}{4 x^{3}-12 x^{2}+9 x+3} .
$$

(a) The graph of f has a minimum turning point at $\left(a, \frac{6}{5}\right)$ and a maximum turning point at ($b, 2$). Use calculus to obtain the values of a and b.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	1.4	4		1.4 .9		1999 SY1 Q13

$$
f(x)=\frac{6}{4 x^{3}-12 x^{2}+9 x+3}
$$

(a)

$$
\begin{array}{rrr}
f^{\prime}(x)=\frac{-6\left(12 x^{2}-24 x+9\right)}{\left(4 x^{3}-12 x^{2}+9 x+3\right)^{2}} & =0 \text { at S.V. } & 1 \text { method } \\
3\left(4 x^{2}-8 x+3\right)=0 & 1 \text { accuracy } \\
(2 x-1)(2 x-3)=0 & \\
\text { i.e. } a=\frac{1}{2} ; b=\frac{3}{2} & & 1 \text { for values }
\end{array}
$$

Let $z=\cos \theta+i \sin \theta$.
(a) Use the binomial theorem to show that the real part of z^{4} is

$$
\begin{equation*}
\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta . \tag{5}
\end{equation*}
$$

Obtain a similar expression for the imaginary part of z^{4} in terms of θ.
(b) Use de Moivre's theorem to write down an expression for z^{4} in terms of 4θ.
(c) Use your answers to (a) and (b) to express $\cos 4 \theta$ in terms of $\cos \theta$ and $\sin \theta$.
(d) Hence show that $\cos 4 \theta$ can be written in the form $k\left(\cos ^{m} \theta-\cos ^{n} \theta\right)+p$ where k, m, n, p are integers. State the values of k, m, n, p.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	5	2.3	5		2.3 .6	1.1 .4	1999 SY1 Q14
(b)	1	2.3	1		2.3 .13		
(c)	1	2.3		1	2.3 .3		
(d)	4	2.3		4	2.3 .14		

(a) $z^{4}=(\cos \theta+i \sin \theta)^{4}$

$$
=\cos ^{4} \theta+4 \cos ^{3} \theta(i \sin \theta)+6 \cos ^{2} \theta(i \sin \theta)^{2}+4 \cos \theta(i \sin \theta)^{3}+(i \sin \theta)^{4}
$$

1 method (binomial)

1 accuracy

$$
=\cos ^{4} \theta+4 i \cos ^{3} \theta \sin \theta-6 \cos ^{2} \theta \sin ^{2} \theta-4 i \cos \theta \sin ^{3} \theta+\sin ^{4} \theta
$$

1 for powers of \boldsymbol{i}
1 for separating into real and imaginary
Hence the real part is $\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$.
The imaginary part is $\left(4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta\right)$

$$
=4 \cos \theta \sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right) .
$$

(b)

$$
\begin{equation*}
(\cos \theta+i \sin \theta)^{4}=\cos 4 \theta+i \sin 4 \theta \tag{1}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta . \tag{1}
\end{equation*}
$$

(d) $\quad \cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta$

$$
=\cos ^{4} \theta-6 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)+\left(1-\cos ^{2} \theta\right)^{2}
$$

1 for using $\sin ^{2} \theta=1-\cos ^{2} \theta$
$=\cos ^{4} \theta-6 \cos ^{2} \theta+6 \cos ^{4} \theta+1-2 \cos ^{2} \theta+\cos ^{4} \theta \quad 1$
$=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
$=8\left(\cos ^{4} \theta-\cos ^{2} \theta\right)+1$
i.e. $k=8, m=4, n=2, p=1$.

In a chemical reaction, two substances X and Y combine to form a third substance Z. Let $Q(t)$ denote the number of grams of Z formed t minutes after the reaction begins. The rate at which $Q(t)$ varies is governed by the differential equation

$$
\begin{equation*}
\frac{d Q}{d t}=\frac{(30-Q)(15-Q)}{900} . \tag{2}
\end{equation*}
$$

(a) Express $\frac{900}{(30-Q)(15-Q)}$ in partial fractions.
(b) Use your answer to (a) to show that the general solution of the differential equation can be written in the form

$$
A \ln \left(\frac{30-Q}{15-Q}\right)=t+C
$$

where A and C are constants.
State the value of A and, given that $Q(0)=0$, find the value C.
Find, correct to two decimal places,
(i) the time taken to form 5 grams of Z,
(ii) the number of grams of Z formed 45 minutes after the reaction begins.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2	1.1	2		1.1 .6		1999 SY1 Q15
(b)	4	2.2	4		2.2 .5		
(b)(i)	1	2.2		1	2.2 .7		
(b)(ii)	2	2.2		2	2.2 .7		

(a)

$$
900=A(15-Q)+B(30-Q)
$$

Letting $Q=30$ gives $A=-60$
and $Q=15$ gives $B=60 \quad 1$ for values

$$
\frac{900}{(30-Q)(15-Q)}=\frac{-60}{(30-Q)}+\frac{60}{(15-Q)}
$$

(b)

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{(30-Q)(15-Q)}{900} \\
& \therefore \quad \int \frac{900}{(30-Q)(15-Q)} d Q=\int d t \quad 1 \text { for separating } \\
& \therefore \quad \int \frac{-60}{(30-Q)}+\frac{60}{(15-Q)} d Q=\int d t \\
& 60 \ln (30-Q)-60 \ln (15-Q)=t+C 1 \text { for integrating } \\
& \text { i.e. } 60 \ln \left(\frac{30-Q}{15-Q}\right)=t+C
\end{aligned}
$$

$$
A=60 \quad 1
$$

$$
C=60 \ln 2(=41.59 \text { to } 2 \text { decimal places })
$$

$$
\begin{equation*}
t=60 \ln \left(\frac{30-Q}{15-Q}\right)-60 \ln 2=60 \ln \left(\frac{30-Q}{2(15-Q)}\right) \tag{i}
\end{equation*}
$$

When $Q=5, t=60 \ln \frac{25}{20}=13.39$ minutes to 2 decimal places.
(ii)

$$
\begin{aligned}
\ln \left(\frac{30-Q}{2(15-Q)}\right) & =\frac{t}{60} \\
30-Q & =2(15-Q) e^{t / 60} \quad 1 \text { for eliminating logs } \\
Q\left(2 e^{t / 60}-1\right) & =30\left(e^{t / 60}-1\right) \\
Q & =\frac{30\left(e^{t / 60}-1\right)}{2 e^{t / 60}-1}
\end{aligned}
$$

When $t=45, Q=10.36$ grams to 2 decimal places.

A plastic container for holding pens is made from a cylinder with conical ends as shown in the diagram. The cylinder has radius 3 cm and length H cm . Each cone has perpendicular height $h \mathrm{~cm}$ and slant height $l \mathrm{~cm}$. The total volume of the container is $900 \mathrm{~cm}^{3}$.

(a) Find an expression for H in terms of h.
(b) Show that the surface area, $S \mathrm{~cm}^{2}$, of the container is given by

$$
\begin{equation*}
S=600-4 \pi h+6 \pi \sqrt{9+h^{2}} \tag{3}
\end{equation*}
$$

(c) Find the value of h for which the total surface area of the container is a minimum. Justify your answer.

Note

You may use the following formulae for the volume and curved surface area of a cone with base radius a, perpendicular height b and slant height c.

Volume $=\frac{1}{3} \pi a^{2} b$.
Curved surface area $=\pi a c$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	3	1.2	3		1.2 .8		1999 SY1 Q16
(b)	3	1.2.	3		1.2 .8		
(c)	3	1.2		3	1.2 .8		

(a)

$$
\begin{array}{cc}
\pi r^{2} H+\frac{2}{3} \pi r^{2} h=900 & 1 \\
\text { But } r=3, \therefore 9 \pi H+6 \pi h=900 \\
H=\frac{100}{\pi}-\frac{2}{3} h & 1
\end{array}
$$

(b) Area of curved surface of one cone $=\pi r l=3 \pi \sqrt{h^{2}+9} \quad 1$ for using $l=\sqrt{h^{2}+9}$ Curved surface area of the cylinder

$$
\begin{array}{cl}
=2 \pi r H=6 \pi\left(\frac{100}{\pi}-\frac{2}{3} h\right)=600-4 \pi h \\
\text { So, } S=600-4 \pi h+6 \pi \sqrt{h^{2}+9}
\end{array}
$$

(c)

$$
\begin{aligned}
\frac{d S}{d h} & =-4 \pi+6 \pi \cdot \frac{1}{2} \cdot 2 h\left(h^{2}+9\right)^{-\frac{1}{2}} \\
& =-4 \pi+\frac{6 \pi h}{\sqrt{h^{2}+9}}=0 \text { at stationary values } \\
3 h & =2 \sqrt{h^{2}+9} \quad \mathbf{1} \text { for this (or equivalent) } \\
9 h^{2} & =4 h^{2}+36 \\
h^{2} & =\frac{36}{5} \\
h & =\frac{6}{\sqrt{5}}=\frac{6}{5} \sqrt{5} \\
\frac{d S}{d h} & =-4 \pi+\frac{6 \pi h}{\sqrt{h^{2}+9}} \\
\frac{d^{2} S}{d h^{2}} & =6 \pi \frac{\left(h^{2}+9\right)^{1 / 2}-h\left(\frac{1}{2}\right) 2 h\left(h^{2}+9\right)^{-1 / 2}}{h^{2}+9} \\
& =6 \pi \frac{h^{2}+9-h^{2}}{\left(h^{2}+9\right)^{3 / 2}}=\frac{54 \pi}{\left(h^{2}+9\right)^{3 / 2}}>0
\end{aligned}
$$

So the stationary value is a minimum turning point.
1 for checking nature

Use induction to prove that

$$
\begin{equation*}
\sum_{r=1}^{n} r(r+1)=\frac{1}{3} n(n+1)(n+2) \tag{5}
\end{equation*}
$$

for all positive integers n.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	3.5		5	3.5 .6		1999 SY2 Q1

True for $n=1$ since LHS $=1 \times 2=2$ and RHS $=\frac{1}{3} \times 1 \times 2 \times 3=2$.
Suppose true for $n=k$, so that

$$
\sum_{r=1}^{k} r(r+1)=\frac{1}{3} k(k+1)(k+2)
$$

Then

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+1) & =\sum_{r=1}^{k} r(r+1)+(k+1)(k+2) \\
& =\frac{1}{3} k(k+1)(k+2)+(k+1)(k+2) \\
& =\frac{1}{3}(k+1)(k+2)(k+3) \\
& =\frac{1}{3}(k+1)((k+1)+1)((k+1)+2)
\end{aligned}
$$

So the result is true for $n=k+1$.
Since it is true for $n=1$ and true for $n=k+1$ whenever it is true for $n=k$, it is true for all $n \geqslant 1$.

The $n \times n$ matrix A satisfies the equation

$$
A^{2}=5 A+3 I
$$

where I is the $n \times n$ identity matrix. Show that A is invertible and express
A^{-1} in the form $p A+q I$.
Obtain a similar expression for A^{4}.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	4	3.2	2	2	3.2 .2		1999 SY2 Q2

$A(A-5 I)=3 I$
1
So $A \times \frac{1}{3}(A-3 I)=I$, so that A^{-1} exists and is $\frac{1}{3}(A-5 I)$.

$$
\begin{align*}
A^{4}=A^{2} \times A^{2} & =(5 A+3 I)(5 A+3 I) \\
& =25 A^{2}+30 A+9 I \tag{1}\\
& =25(5 A+3 I)+30 A+9 I \\
& =155 A+84 I
\end{align*}
$$

1
(i) The sequence $\left\{u_{n}\right\}$ is defined by $u_{1}=1, u_{n}=3 u_{n-1}+2(n \geqslant 2)$. Let

$$
A_{n}=\left(\begin{array}{cc}
u_{n} & 1 \\
-1 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right) .
$$

Show that $A_{n-1} B=A_{n}$, and deduce that

$$
\begin{equation*}
A_{n}=A_{1} B^{n-1} \tag{4}
\end{equation*}
$$

By taking determinants, deduce that $u_{n}=2 \times 3^{n-1}-1$.
(ii) Let $S=\left(\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right)$ and $T=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)$.
(a) Show that $D=T^{\prime} S T$ is a diagonal matrix.
(b) Explain briefly the geometrical significance of the transformation

$$
\begin{equation*}
\mathbf{x}=T \mathbf{X} \text { where } \mathbf{x}=\binom{x}{y} \text { and } \mathbf{X}=\binom{X}{Y} \text {. } \tag{2}
\end{equation*}
$$

(c) Use this transformation to rewrite the equation

$$
\begin{equation*}
5 x^{2}+6 x y+5 y^{2}=16 \tag{3}
\end{equation*}
$$

in terms of X and Y.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(i)	6	3.2	4	2	3.2 .2	3.2 .4	1999 SY2 Q7
(ii)	6	3.2	3	3	3.2 .2	3.2 .9	

(a)

$$
\begin{aligned}
A_{n-1} B & =\left(\begin{array}{cc}
u_{n-1} & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 u_{n}+2 & 1 \\
-1 & 1
\end{array}\right)=A_{n}
\end{aligned}
$$

So $A_{n}=A_{n-1} B=A_{n-2} B^{2}=A_{n-3} B^{3}=\ldots=A_{1} B^{n-1}$.

$$
\text { Thus }\left|A_{n}\right|=\left|A_{1}\right| \times|B|^{n-1}
$$

i.e. $u_{n+1}=2 \times 3^{n-1}$.
(b) (i)

$$
\begin{aligned}
D & =\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
5 & 3 \\
3 & 5
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
2 & -2 \\
8 & 8
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
4 & 0 \\
0 & 16
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 8
\end{array}\right)
\end{aligned}
$$

(ii) Rotation of axes through $\frac{\pi}{4}$.
(iii)

$$
\begin{array}{rlr}
5 x^{2}+6 x y+5 y^{2} & =\mathbf{x}^{\prime} S \mathbf{x} \\
& =\mathbf{x}^{\prime} T^{\prime} S T \mathbf{x} \\
& =\mathbf{x}^{\prime} D \mathbf{x}=2 X^{2}+8 Y^{2} & \mathbf{1}
\end{array}
$$

i.e. equation becomes $2 X^{2}+8 Y^{2}=16$.
(i) (a) Use the Euclidean algorithm to find integers x and y such that

$$
\begin{equation*}
37 x+23 y=1 \tag{3}
\end{equation*}
$$

(b) It is given that if $x=x_{0}, y=y_{0}$ is a particular integer solution of the equation $a x+b y=c$, where a, b, c are integers with a and b coprime, then the general integer solution is $x=x_{0}-b t$, $y=y_{0}+a t, t \in \mathbb{Z}$.
Hence solve the following problem.

Chocobars cost 23 pence each, and Choconuts cost 37 pence each. Jo bought some of each, and the total cost was exactly $£ 10$. How many Chocobars did Jo buy?
(ii) Use the method of proof by contradiction to show that $\sqrt{3}$ is irrational.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(i)(a)	3	3.5	3		3.5 .10		1999 SY2 Q8
(b)	6	3.5		6	3.5 .11		
(ii)	4	2.5	4		2.5 .6		

(a)

$$
\begin{aligned}
37 & =1 \times 23+14 \\
23 & =1 \times 14+9 \\
14 & =1 \times 9+5 \\
9 & =1 \times 5+4 \\
5 & =1 \times 4+1
\end{aligned}
$$

So

$$
\begin{aligned}
1 & =5-(9-5)=2 \times 5-9 \\
& =2(14-9)-9=2 \times 14-3 \times 9 \\
& =2 \times 14-3(23-14)=5 \times 14-3 \times 23 \\
& =5(37-23)-3 \times 23 \\
& =5 \times 37-8 \times 23
\end{aligned}
$$

Thus $x=5$ and $y=-7$.

Let $x=$ number of choconuts and $y=$ number of chocobars.
So, we have to solve

$$
\begin{equation*}
37 x+23 y=1000 \tag{l}
\end{equation*}
$$

One solution is $x_{0}=5000, y_{0}=-8000$ 1
so the general solution is

$$
x=5000-23 t, \quad y=-8000+37 t
$$

Require $\quad t \leqslant \frac{5000}{23}=217.39 \ldots$
and

$$
t \geqslant \frac{8000}{37}=216 \cdot 21 \ldots
$$

Thus $t=217$
which gives $y=37 \times 217-8000=29$.
(b) Suppose $\sqrt{3}=\frac{a}{b}$ where a, b are coprime integers.

Then $a^{2}=3 b^{2}$ so $3 \mid a^{2}$ so $3 \mid a$.
So let $a=3 c$ and the equation becomes

$$
\begin{equation*}
3 b^{2}=9 c^{2} \Rightarrow b^{2}=3 c^{2} \tag{1}
\end{equation*}
$$

But then $3 \mid b$ and so a, b are not coprime. Thus a contradiction is established and hence $\sqrt{3}$ is irrational.
(a) Show that if $M=\left(\begin{array}{rr}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$ then $M^{2}=I$ where I is the 2×2 identity matrix.
By choosing two different values of θ, exhibit two matrices A, B such that $A^{2}=I$ and $B^{2}=I$ but $(A B)^{2} \neq I$.
(b) Prove that if C and D are $n \times n$ matrices such that $C^{2}=I, D^{2}=I$ and C and D commute, then $(C D)^{2}=I$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	5	3.2	1	4	3.2 .2		1999 SY2 Q9
(b)	2	3.2	2		3.2 .3		

(a)

$$
\begin{align*}
M^{2}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) & =\left(\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & 0 \\
0 & \sin ^{2} \theta+\cos ^{2} \theta
\end{array}\right) \\
& =I \tag{2}
\end{align*}
$$

Take $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
Then $A B=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
where $(A B)^{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \neq I$.
(b) Suppose $C^{2}=D^{2}=I$ and $C D=D C$.

Then

$$
\begin{align*}
(C D)^{2} & =C D \cdot C D \tag{1}\\
& =D C \cdot C D \\
& =D \cdot C^{2} \cdot D=D D=I
\end{align*}
$$1

(i) Show that the lines

$$
\begin{align*}
& L_{1}: \frac{x-3}{2}=\frac{y+1}{3}=\frac{z-6}{1} \\
& L_{2}: \frac{x-3}{-1}=\frac{y-6}{2}=\frac{z-11}{2} \tag{6}
\end{align*}
$$

intersect, and find the point of intersection.
Obtain an equation for the plane containing both L_{1} and L_{2}.
(ii) Which of the following statements about 3-dimensional vectors are true and which are false? Justify each true statement and give a counterexample to each false statement.
(a) $\mathbf{u} \times \mathbf{v}=\mathbf{v} \times \mathbf{u}$ for all \mathbf{u}, \mathbf{v}.
(b) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0$ for all \mathbf{u}, \mathbf{v}.
(c) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{v} \cdot(\mathbf{u} \times \mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(i)	6	3.1	6		3.1 .6		SY2 1999 Q10
	3	3.1		3	3.1 .7		
(ii)	6	3.5	6		3.5 .4	$3.1 .3 / 4$	

(i) $\quad L_{1}: x=2 s+3, y=3 s-1, z=s+6$
$L_{2}: x=-t+8, y=-2 t+6, z=2 t+11$
Equating the x and y formulas gives

$$
\begin{aligned}
2 s+3 & =-t+8 \text { and } 3 s-1=-2 t+6 \\
\Rightarrow t & =-2 s+5 \text { and } 3 s=-2 s+7
\end{aligned}
$$

leading to $s=3$ and $t=-1$
1
Checking $z: s+6=9$ and $2 t+11=9$ 1
so the lines $d o$ intersect.
Point of intersection is $(9,8,9)$.
Normal to plane is

$$
\begin{aligned}
& (2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}) \times(-\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & 1 \\
-1 & -2 & 2
\end{array}\right|=8 \mathbf{i}-5 \mathbf{j}-\mathbf{k}
\end{aligned}
$$

So the equation of the plane is

$$
\begin{aligned}
& 8 x-5 y-z=72-40-9 \\
& 8 x-5 y-z=23
\end{aligned}
$$1

(ii) (a) False 1
e.g. take $\mathbf{u}=\mathbf{i}, \mathbf{v}=\mathbf{j}$
(b) True
$\mathbf{u} \times \mathbf{v}$ is perpendicular to $\mathbf{u} \quad 1$
so $(\mathbf{u} \times \mathbf{v}) . \mathbf{u}=0 . \quad 1$
(c) False 1
e.g. $\mathbf{i} .(\mathbf{j} \times \mathbf{k})=\mathbf{i . i}=1, \mathbf{j} .(\mathbf{i} \times \mathbf{k})=\mathbf{j} .(-\mathbf{j})=-1 \quad 1$

Note: in (a) and (b) an unsupported claim of 'false' would not get a mark.
(a) Differentiate $f(x)=e^{x^{2}+3}$.
(b) Differentiate $g(x)=\ln \sqrt{x^{2}+3}$.

Hence find $\int \frac{5 x}{x^{2}+3} d x$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2	1.2	2		1.2 .4	1.2 .5	2000 SY1 Q1
(b)	3	2.1		3	2.1 .5		
	2	2.2		2	2.2 .1		

(a)

$$
f(x)=e^{x^{2}+3} \Rightarrow f^{\prime}(x)=2 x e^{x^{2}+3} \quad 1 \text { for } 2 x
$$

(b) Method 1

$$
\begin{array}{lr}
g(x)=\ln \sqrt{x^{2}+3}=\frac{1}{2} \ln \left(x^{2}+3\right) & 1 \text { for simplifying } \\
g^{\prime}(x)=\frac{1}{2} \frac{2 x}{\left(x^{2}+3\right)}=\frac{x}{\left(x^{2}+3\right)} . & 1 \text { for } 2 x \\
\left(x^{2}+3\right)
\end{array}
$$

Method 2

$$
\begin{aligned}
& g(x)=\ln \sqrt{x^{2}+3}=\ln \left(x^{2}+3\right)^{1 / 2} \\
& g^{\prime}(x)=\frac{\frac{1}{2}\left(x^{2}+3\right)^{-\frac{1}{2}} 2 x}{\left(x^{2}+3\right)^{\frac{1}{2}}}=\frac{x}{\left(x^{2}+3\right)} \cdot\left\{\begin{array}{r}
1 \text { for } \frac{1}{2}\left(x^{2}+3\right)^{-\frac{1}{2}} \\
1 \text { for } 2 x \\
1 \text { for }\left(x^{2}+3\right)^{\frac{1}{2}}
\end{array}\right.
\end{aligned}
$$

(c)

$$
\begin{array}{rlr}
\int \frac{5 x}{\left(x^{2}+3\right)} d x & =5 \int \frac{x}{\left(x^{2}+3\right)} d x & 1 \text { for handling the ' } 5 \text { ' } \\
& =5 \ln \sqrt{x^{2}+3}+c & 1 \text { for result }
\end{array}
$$

Let A be the matrix

$$
A=\left(\begin{array}{rrr}
-1 & 6 & -3 \tag{4}\\
-2 & 7 & -3 \\
-4 & 12 & -5
\end{array}\right)
$$

Show that $A^{3}+A^{2}-A=I$ where I denotes the 3×3 identity matrix.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	4	3.4	4		3.4 .2		2000 SY1 Q3

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{rrr}
-1 & 6 & -3 \\
-2 & 7 & -3 \\
-4 & 12 & -5
\end{array}\right)\left(\begin{array}{rrr}
-1 & 6 & -3 \\
-2 & 7 & -3 \\
-4 & 12 & -5
\end{array}\right) \mathbf{1} \text { method for multiplying } \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\therefore A^{3}+A^{2}-A=A+I-A=I . \quad 1 \text { for evidence of } A^{3}=A, \text { etc }
$$

Plot the complex number $z=\sqrt{ } 3+i$ on an Argand diagram and find the modulus and argument of z.
Calculate $\frac{\bar{z}}{z}$ where \bar{z} denotes the complex conjugate of z.
Use de Moivre's theorem to evaluate z^{6}.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	3	2.3	3		2.3 .7	2.3 .4	2000 SY1 Q4
	2	2.3	2		2.3 .6	2.3 .7	
	2	2.3	2		2.3 .13		

1 for reasonable diagram

$$
\begin{aligned}
|z| & =\sqrt{3+1}=2 \\
\arg z & =\tan ^{-1} \frac{1}{\sqrt{3}}=30^{\circ} \\
\frac{\bar{z}}{z} & =\frac{\sqrt{3}-i}{\sqrt{3}+i} \times \frac{\sqrt{3}-i}{\sqrt{3}-i} \\
& =\frac{2-2 \sqrt{3} i}{4}=\frac{1}{2}-\frac{\sqrt{3}}{2} i . \\
z^{6}= & 2^{6}\left(\cos 6 \times 30^{\circ}+i \sin 6 \times 30^{\circ}\right) \quad 1 \\
= & 2^{6} \times(-1)=-64 .
\end{aligned}
$$

The function g is defined by

$$
g(x)=x \tan ^{-1} x, \quad x \in \mathbf{R}
$$

Verify that the second derivative of g is given by

$$
\begin{equation*}
g^{\prime \prime}(x)=\frac{C}{\left(1+x^{2}\right)^{2}} \tag{5}
\end{equation*}
$$

where C is a constant. State the value of C.
Explain why the graph of g has no points of inflexion.

			level		Content Reference:		
part	marks	Unit	C	A / B	Main	Additional	Source
		2.1	2		2.1 .1	1.2 .4	2000 SY1 Q6
		1.2	3		1.2 .4		
		1.4	1		1.4 .3		

$$
\begin{aligned}
& g(x)=x \tan ^{-1} x \\
& \therefore g^{\prime}(x)=\tan ^{-1} x+\frac{x}{x^{2}+1} \quad \begin{array}{r}
1 \text { for using product rule } \\
1 \text { for } \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}
\end{array} \\
& g^{\prime \prime}(x)=\frac{1}{x^{2}+1}+\frac{\left(x^{2}+1\right)-x .2 x}{\left(x^{2}+1\right)^{2}} \quad 1 \text { for quotient rule } \\
& \\
& =\frac{x^{2}+1+1-x^{2}}{\left(x^{2}+1\right)^{2}} \\
& \\
& =\frac{2}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

(therefore $C=2$).
$g^{\prime \prime}(x)>0$ (or $g^{\prime \prime}(x) \neq 0$) so the graph of g has no points of inflexion (or equivalent).

The diagram below shows the graphs of $y=x$ and $y=h(x)$ where the function h is defined by

$$
h(x)=e^{x-2}, \quad-1 \leqslant x \leqslant 3
$$

(i) Sketch the graph of the inverse function h^{-1}.
(ii) Find a formula for h^{-1}.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(i)	1	1.4	1		1.4 .7		2000 SY1 Q7
(ii)	2	1.4	2		1.4 .7		

(i)

(ii) Let $y=e^{x-2}$ then $x-2=\ln y$
i.e. $x=2+\ln y$
i.e. $h^{-1}(x)=2+\ln x$

The acceleration of a particle travelling in a straight line is given by $\frac{1}{1+t^{2}} \mathrm{~ms}^{-2}$, where t is the time in seconds since the particle started moving. Given that the velocity is zero when $t=1$ find the velocity when $t=\sqrt{ } 3$.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	4	1.2	4		1.2 .8		2000 SY1 Q8

$$
\begin{align*}
\frac{d v}{d t} & =\frac{1}{1+t^{2}} \tag{1}\\
v & =\int \frac{1}{1+t^{2}} d t \\
& =\tan ^{-1} t+c \tag{1}\\
t=1 \Rightarrow v= & 0 \Rightarrow c=-\frac{\pi}{4} \\
t=\sqrt{3} \Rightarrow v & =\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12} \approx 0.262
\end{align*}
$$

Express in partial fractions

$$
\begin{equation*}
\frac{11-2 x}{x^{2}+x-2} \tag{3}
\end{equation*}
$$

Hence obtain

$$
\begin{equation*}
\int_{3}^{5} \frac{11-2 x}{x^{2}+x-2} d x \tag{3}
\end{equation*}
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	3	1.1			1.1 .6		2000 SY1 Q10
	3	2.2			2.2 .1		

$$
\begin{array}{rlr}
\frac{11-2 x}{x^{2}+x-2} & =\frac{11-2 x}{(x-1)(x+2)} \\
& =\frac{A}{x-1}+\frac{B}{x+2} \\
11-2 x=A(x+2)+B(x-1) & \mathbf{1} \\
x=1 \Rightarrow 3 A=9 ; A=3 & \mathbf{1} \\
x=-2 \Rightarrow-3 B=15 ; B=-5 & \mathbf{1} \\
\int_{3}^{5} \frac{11-2 x}{x^{2}+x-2} d x & =\int_{3}^{5} \frac{3}{x-1}-\frac{5}{x+2} d x & \mathbf{1} \\
& =[3 \ln (x-1)-5 \ln (x+2)]_{3}^{5} \\
& =3 \ln 4-3 \ln 2-5 \ln 7+5 \ln 5 \\
& =\left(\ln \frac{2^{3} 5^{5}}{7^{5}}\right) \approx 0.397
\end{array}
$$

The function f is defined by

$$
f(x)=e^{x} \cos x, \quad 0 \leqslant x \leqslant \frac{\pi}{2} .
$$

(a) Find the stationary point of f and determine its nature.

Sketch the graph of f showing clearly where the graph meets the x-axis and the y-axis.
(b) By integrating by parts twice, show that

$$
\begin{equation*}
\int f(x) d x=\frac{1}{2} e^{x}(\cos x+\sin x)+C \tag{4}
\end{equation*}
$$

where C denotes the constant of integration.
(c) Use the previous results to calculate the area bounded by the graph of f and the coordinate axes.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	5	1.4	5		1.4 .9	$1.2 .4 / 5$	2000 SY1 Q12
(b)	4	2.2	2	2	2.2 .4	1.3 .3	
(c)	2			2	1.3 .6		

(a)

$$
f^{\prime}(x)=e^{x} \cos x-e^{x} \sin x=0
$$

$$
\text { when } \tan x=1 \text { i.e. } x=\frac{\pi}{4}
$$

$$
f^{\prime}(x)=e^{x}(\cos x-\sin x)>0 \text { for } x<\frac{\pi}{4}
$$

$$
f^{\prime}(x)=e^{x}(\cos x-\sin x)<0 \text { for } x>\frac{\pi}{4}
$$

$$
\text { i.e. }\left(\frac{\pi}{4}, e^{\pi / 4} / \sqrt{2}\right) \text { is a maximum. }
$$

1 for justifying

(b)

$$
\begin{aligned}
\int f(x) d x & =\int e^{x} \cos x d x \\
& =e^{x} \int \cos x d x-\int e^{x} \int \cos x d x d x \\
& =e^{x} \sin x-\int e^{x} \sin x d x \\
& =e^{x} \sin x-\left(e^{x} \int \sin x d x-\int e^{x}(-\cos x) d x\right) \\
& =e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x \\
& \therefore 2 \int e^{x} \cos x d x=e^{x}(\sin x+\cos x)+C^{\prime} \\
& \text { i.e. } \int f(x) d x=\frac{1}{2} e^{x}(\cos x+\sin x)+C
\end{aligned}
$$

$$
\mathbf{1}
$$

$$
\mathbf{1}
$$

(c)

$$
\begin{align*}
\text { Area } & =\int_{0}^{\pi / 2} f(x) d x \\
& =\left[\frac{1}{2} e^{x}(\cos x+\sin x)\right]_{0}^{\pi / 2} \\
& =\frac{1}{2}\left(e^{\pi / 2}-1\right)(\approx 1.91) \tag{1}
\end{align*}
$$

A car manufacturer is planning future production patterns. Based on estimates of time, cost and labour, he obtains a set of three equations for the numbers x, y, z of three new types of car. These equations are

$$
\begin{aligned}
x+2 y+z & = & 60 \\
2 x+3 y+z & = & 85 \\
3 x+y+(\lambda+2) z & = & 105
\end{aligned}
$$

where the integer λ is a parameter such that $0<\lambda<10$.
(a) Use Gaussian elimination to find an expression for z in terms of λ.
(b) Given that z must be a positive integer, what are the possible values for z ?
(c) Find the corresponding values of x and y for each value of z.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	5	1.5		5	1.5 .4		2000 SY1 Q13
(b)	2						
(c)	2						

(a)

$$
\begin{align*}
& x+2 y+z=60 \\
& 2 x+3 y+z=85 \\
& 3 x+y+(\lambda+2) z=105 \\
& x+2 y+z=60 \\
& -y-z=-35 \\
& -5 y+(\lambda-1) z=-75 \\
& 1 \text { for using Gaussian elimination } \\
& 1 \text { for new equation } 2 \\
& 1 \text { for new equation } 3 \\
& x+2 y+z=60 \\
& -y-z=-35 \\
& (4+\lambda) z=100 \\
& 1 \text { for eliminating } \boldsymbol{y} \\
& \text { so } z=\frac{100}{4+\lambda} \tag{1}
\end{align*}
$$

(b) $4+\lambda$ is a factor of 100 ,
so $\lambda=1$ which gives $z=20$
or $\lambda=6$ giving $z=10$.
(c) $z=20 \Rightarrow y=15 ; x=10$ 1
$z=10 \Rightarrow y=25 ; x=0$.

By writing

$$
(k+1)^{3}-k^{3}=3 k^{2}+3 k+1
$$

show that

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1) \tag{5}
\end{equation*}
$$

Deduce that

$$
\begin{equation*}
2^{2}+4^{2}+6^{2}+\ldots+(2 n)^{2}=\frac{2}{3} n(n+1)(2 n+1) \tag{2}
\end{equation*}
$$

Hence obtain the sum of the squares of all the even integers between 99 and 201.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	3.5	5		3.5 .6		2000 SY1 Q14
	4	3.5		4	3.5 .8		

$$
\begin{aligned}
& \sum_{k=1}^{n}\left((k+1)^{3}-k^{3}\right)=\sum_{k=1}^{n}\left(3 k^{2}+3 k+1\right) .1 \text { for idea of summation } \\
& \mathrm{So}(n+1)^{3}-1=3 \sum k^{2}+3 \sum k+n \quad 1 \text { for 'telescoping' } \\
& 1 \text { for RHS } \\
& 3 \sum k^{2}=(n+1)^{3}-\frac{3}{2} n(n+1)-(n+1) \quad 1 \text { for using } \sum k=\frac{1}{2} n(n+1) \\
& =(n+1)\left(n^{2}+2 n+1-\frac{3}{2} n-1\right) \\
& =\frac{1}{2}(n+1)\left(2 n^{2}+n\right) \\
& \text { i.e. } \sum k^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& 2^{2}+4^{2}+6^{2}+\ldots+(2 n)^{2}=2^{2}\left(1^{2}+2^{2}+\ldots+n^{2}\right) \quad 1 \text { for common factor } \\
& =\frac{4}{6} n(n+1)(2 n+1) \quad 1 \text { for using result above } \\
& =\frac{2}{3} n(n+1)(2 n+1) \text {. } \\
& 100^{2}+\ldots+200^{2}=\frac{2}{3}(100 \times 101 \times 201-49 \times 50 \times 99) \quad 1 \text { for using } 100 \text { and } 49 \\
& =1191700 \\
& 1
\end{aligned}
$$

A tank initially holds 20 litres of pure water. A solution of water containing 0.1 kg of salt per litre flows into the tank at a rate of 4 litres per minute. The contents of the tank are stirred continually to maintain a uniform concentration and liquid flows out at the same rate. At time t minutes, the water in the tank contains $x \mathrm{~kg}$ of salt.
(a) Write down expressions for
(i) the amount of salt flowing into the tank per minute,
(ii) the amount of salt flowing out of the tank per minute.

Hence show that at any time $t>0$, the amount of salt, $x \mathrm{~kg}$, in the tank can be modelled by the differential equation

$$
\begin{equation*}
\frac{d x}{d t}=\frac{2-x}{5} \tag{2}
\end{equation*}
$$

(b) Find a formula for x in terms of t.
(c) How much salt is present after 20 minutes?
(d) In the long term, what will be the amount of salt in the tank?

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	2.2	4		2.2 .6		2000 SY1 Q15
(b)	4	2.2	4		2.2 .5		
(c)	2						
(d)	1						

(a) (i) the amount of salt flowing in per minute is $0.4 \mathrm{~kg} \quad 1$
(ii) the amount of salt flowing out per minute is $\frac{4 x}{20}=\frac{x}{5}$. $\quad 1$

$$
\frac{d x}{d t}=0.4-\frac{x}{5}=\frac{2-x}{5}
$$

(b)

$$
\begin{gathered}
\int \frac{d x}{2-x}=\int \frac{d t}{5} \\
-\ln (2-x)=\frac{t}{5}+c \\
t=0, x=0 \Rightarrow c=-\ln 2 \\
\frac{2}{2-x}=e^{t / 5} \\
x=2\left(1-e^{-t / 5}\right)
\end{gathered}
$$

(c)

$$
\begin{aligned}
t=20 \Rightarrow x & =2\left(1-e^{-4}\right) \\
x & \approx 1.96 \mathrm{~kg}
\end{aligned}
$$

(d) In the long term, $x \rightarrow 2$ so the limit is 2 kg .

Use the Euclidean Algorithm to find integers x, y such that

$$
\begin{equation*}
181 x+79 y=1 \tag{5}
\end{equation*}
$$

Hence write down the multiplicative inverse of 79 in \mathbb{Z}_{181}.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	3.5	2	3	3.5 .10	3.5 .11	2000 SY2 Q1

$$
\begin{aligned}
181 & =2 \times 79+23 \\
79 & =3 \times 23+10 \\
23 & =2 \times 10+3 \\
10 & =3 \times 3+1
\end{aligned}
$$

Hence

$$
\begin{aligned}
1 & =10-3(23-2 \times 10) \\
& =7 \times 10-3 \times 23 \\
& =7(79-3 \times 23)-3 \times 23 \\
& =55 \times 79-24 \times 181
\end{aligned}
$$1

The inverse of 79 is 55 1

Use induction to prove that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{1}{3^{r}}=\frac{1}{2}\left(1-\frac{1}{3^{n}}\right) \tag{5}
\end{equation*}
$$

for all positive integers n.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
	5	3.5	1	4	3.5 .6		2000 SY2 Q3

When $n=1$, LHS $=\sum_{r=1}^{1} \frac{1}{3^{r}}=\frac{1}{3} ;$ RHS $=\frac{1}{2}\left(1-\frac{1}{3}\right)=\frac{1}{3}$; so true for $n=1$.
Assume true for $n=k$, so that $\sum_{r=1}^{k} \frac{1}{3^{r}}=\frac{1}{2}\left(1-\frac{1}{3^{k}}\right)$.

$$
\text { Then } \begin{aligned}
\sum_{r=1}^{k+1} \frac{1}{3^{r}}=\sum_{r=1}^{k} \frac{1}{3^{r}}+\frac{1}{3^{k+1}} & =\frac{1}{2}\left(1-\frac{1}{3^{k}}\right)+\frac{1}{3^{k+1}} \\
& =\frac{1}{2}\left(1-\frac{3}{3^{k+1}}+\frac{2}{3^{k+1}}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{3^{k+1}}\right)
\end{aligned}
$$

So the result is true for $n=k+1$.
Since it is true for $n=1$ and true for $n=k+1$ whenever it is true for $n=k$, it is true for all $n \geqslant 1$.

A square matrix M is orthogonal if $M^{\prime} M=I$.
(a) Prove that if A and B are $n \times n$ orthogonal matrices then so is $A B$.
(b) Prove that if A is orthogonal then $\operatorname{det} A= \pm 1$.
(You may assume that $\operatorname{det} A=\operatorname{det} A^{\prime}$.)
(c) Give an example of a 2×2 matrix P which is not orthogonal but is such that $\operatorname{det} P= \pm 1$. Justify your answer.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	2	3.2	2		3.2 .3		2000 SY2 Q4
(b)	2	3.2	2		3.2 .4		
(c)	2	3.2		2	3.2 .4	3.5 .4	

(a) Given $A A^{\prime}=B B^{\prime}=I$, then

$$
\begin{align*}
(A B)^{\prime}(A B) & =B^{\prime} A^{\prime} A B \tag{1}\\
& =B^{\prime}\left(A^{\prime} A\right) B=B^{\prime} I B \\
& =B^{\prime} B=I \tag{1}
\end{align*}
$$

(b)

$$
\begin{aligned}
\operatorname{det}\left(A^{\prime} A\right)=\operatorname{det} I & =1 \\
\operatorname{det} A^{\prime} \cdot \operatorname{det} A & =1 \\
\therefore(\operatorname{det} A)^{2} & =1 \Rightarrow \operatorname{det} A= \pm 1
\end{aligned}
$$

(c) Any appropriate example will do.

For example, $P=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is such that $\operatorname{det} P=1 \times 1-0 \times 1=1$.

$$
\text { But } P^{\prime} P=\left(\begin{array}{ll}
1 & 0 \tag{1}\\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \neq I .
$$

Consider the following two statements S and T .
S: If p and q are two odd prime numbers then $p+q$ is not prime.
T: If p and q are two odd prime numbers then $p-q$ is not prime.
For each of S and T, give a proof if it is true, or give a counter-example if it is false.

			level		Content Reference:		
part	marks	Unit	C	A / B	Main	Additional	Source
	3	3.5	3		3.5 .3	3.5 .4	2000 SY2 Q5

S is true. If p and q are two odd primes then $p+q$ is even.
Since odd primes are greater than or equal to $3, p+q$ cannot be 2 .
T is false. For example $p=5, q=3$.
(Other examples will do, but they must differ by 2.)

Throughout this question

$$
M=\left(\begin{array}{ll}
0 & 1 \tag{4}\\
1 & 1
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right) .
$$

(a) Find A^{-1}, M^{3} and $M^{3} A$.
(b) The Fibonacci numbers f_{n} are defined by

$$
f_{1}=1, f_{2}=2, f_{n}=f_{n-1}+f_{n-2}(n \geqslant 3)
$$

Thus, each Fibonacci number is the sum of the previous two:

$$
f_{3}=f_{2}+f_{1}=2+1=3, f_{4}=3+2=5 \text {, etc. }
$$

Prove by induction that

$$
M^{n+2}=\left(\begin{array}{cc}
f_{n} & f_{n+1} \tag{4}\\
f_{n+1} & f_{n+2}
\end{array}\right)
$$

for each positive integer n.
(c) The Lucas numbers λ_{n} are defined by

$$
\lambda_{1}=1, \quad \lambda_{2}=3, \quad \lambda_{n}=\lambda_{n-1}+\lambda_{n-2} \quad(n \geqslant 3),
$$

so that $\lambda_{3}=3+1=4, \lambda_{4}=4+3=7$, etc.
Verify that

$$
M^{3} A=\left(\begin{array}{ll}
\lambda_{4} & \lambda_{5} \tag{2}\\
\lambda_{5} & \lambda_{6}
\end{array}\right) .
$$

(d) It is given that $M^{n} A=\left(\begin{array}{ll}\lambda_{n+1} & \lambda_{n+2} \\ \lambda_{n+2} & \lambda_{n+3}\end{array}\right)$ for all positive integers n. By using the identity $M^{n}=\left(M^{n} A\right) A^{-1}$, and the results of (a) and (b), show that f_{n} can be expressed in the form

$$
f_{n}=s \lambda_{n+2}-t \lambda_{n+3}
$$

and determine the values of s and t.

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	3.2	4		3.2 .4	3.2 .2	2000 SY2 Q7
(b)	5	3.5	5		3.5 .6	3.2 .2	
(c)	2	3.5	2		3.5 .3		
(d)	4	3.2		4	3.2 .2		

(a)

$$
\begin{aligned}
A^{-1} & =\frac{1}{4-9}\left(\begin{array}{cc}
4 & -3 \\
-3 & 1
\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}
-4 & 3 \\
3 & -1
\end{array}\right) \\
M^{3} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right) \\
M^{3} A & =\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
7 & 11 \\
11 & 18
\end{array}\right)
\end{aligned}
$$

(b) When $n=1, \quad \mathrm{LHS}=M^{3}=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$ (from (a)) and

$$
\text { RHS }=\left(\begin{array}{ll}
f_{1} & f_{2} \tag{1}\\
f_{2} & f_{3}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right) \text { so result holds when } n=1
$$

Suppose the result is true for $n=k$, i.e. $M^{k+2}=\left(\begin{array}{cc}f_{k} & f_{k+1} \\ f_{k+1} & f_{k+2}\end{array}\right)$. Then

$$
\left.\begin{array}{rl}
M^{k+3}=M^{k+2} M & =\left(\begin{array}{cc}
f_{k} & f_{k+1} \\
f_{k+1} & f_{k+2}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
f_{k+1} & f_{k}+f_{k+1} \\
f_{k+2} & f_{k+1}+f_{k+2}
\end{array}\right)=\left(\begin{array}{l}
f_{k+1} f_{k+2} \\
f_{k+2}
\end{array} f_{k+3}\right.
\end{array}\right) .
$$

Since result is true for $n=1$ and true for $n=k+1$ whenever it is true for $n=k$, it is true for all $n \geqslant 1$.

1
(c) $\lambda_{5}=7+4=11, \lambda_{6}=11+7=18$.
and $M^{3} A=\left(\begin{array}{cc}7 & 11 \\ 11 & 18\end{array}\right)=\left(\begin{array}{ll}\lambda_{4} & \lambda_{5} \\ \lambda_{5} & \lambda_{6}\end{array}\right)$.
1
(d) $M^{n}=\left(M^{n} A\right) A^{-1}$ becomes

$$
\left(\begin{array}{cc}
f_{n-2} & f_{n-1} \\
f_{n-1} & f_{n}
\end{array}\right)=\frac{1}{5}\left(\begin{array}{ll}
\lambda_{n+1} & \lambda_{n+2} \\
\lambda_{n+2} & \lambda_{n+3}
\end{array}\right)\left(\begin{array}{cc}
-4 & 3 \\
3 & -1
\end{array}\right)
$$

Selecting the $(2,2)$ element on each side gives

$$
\begin{gather*}
f_{n}=\frac{1}{5}\left(3 \lambda_{n+2}-\lambda_{n+3}\right) \\
\text { so } \quad s=\frac{3}{5}, t=\frac{1}{5}
\end{gather*}
$$

1

The Millennium Pyramid is constructed with a hexagonal base and six isosceles triangular faces. The vertices of the base are the points $A(2,0,0)$, $B(1, \sqrt{ } 3,0), \quad C(-1, \sqrt{ } 3,0), \quad D(-2,0,0), \quad E(-1,-\sqrt{ } 3,0) \quad$ and $F(1,-\sqrt{ } 3,0)$. The apex G of the pyramid is the point $(0,0,3)$.
(a) Find the equation of the plane containing the triangle $A B G$.
(b) The angle between two faces is defined to be the acute angle between their normals.
Find (i) the angle between the face $A B G$ and the base;
(ii) the angle between the faces $A B G$ and $A F G$.
(c) An inward-pointing spotlight is located at the centroid of each triangular face so that its beam is perpendicular to the face. Find the point on the z-axis which is illuminated by the spotlights.

Note The position vector of the centroid of a triangle $P Q R$ is given by

$$
\frac{1}{3}(\mathbf{p}+\mathbf{q}+\mathbf{r}) .
$$

			level		Content Reference:		
part	marks	Unit	C	A/B	Main	Additional	Source
(a)	4	3.1	4		3.1 .7	3.1 .4	2000 SY2 Q8
(b)(i)	3	3.1		3	3.1 .8		
(b)(ii)	4	3.1		4	3.1 .8		
(c)	4	3.1		4	3.1 .9	3.1 .5	

(a) One method is to find vectors for two of the sides, form the vector product to obtain a normal and then use one corner to finish the equation.

$$
\begin{gather*}
\overrightarrow{F A}=\mathbf{i}+\sqrt{3} \mathbf{j} ; \quad \overrightarrow{F G}=-\mathbf{i}+\sqrt{3} \mathbf{j}+3 \mathbf{k} \tag{1}\\
\overrightarrow{F A} \times \overrightarrow{F G}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & \sqrt{3} & 0 \\
-1 & \sqrt{3} & \mathbf{3}
\end{array}\right|=3 \sqrt{3} \mathbf{i}-3 \mathbf{j}+2 \sqrt{ } 3 \mathbf{k}
\end{gather*}
$$

Hence, equation of $A F G$ is of the form $3 x-\sqrt{ } 3 y+2 z=k$ and $k=6$.

$$
3 x-\sqrt{ } 3 y+2 z=6
$$

(b) (i) The normal to the base is \mathbf{k} and to $A F G$ is $3 \mathbf{i}-\sqrt{ } 3 \mathbf{j}+2 k . \quad 2$ Applying a.b $=a b \cos \theta$ where θ is the angle between the normals gives

$$
\text { 1. } \sqrt{9+3+4} \cos \theta=\mathbf{k} \cdot(3 \mathbf{i}-\sqrt{ } 3 \mathbf{j}+2 \mathbf{k})=2
$$

i.e. $\cos \theta=\frac{1}{2}$ i.e. $\theta=\frac{\pi}{3}\left(=60^{\circ}\right) .1$
(ii) The normal of $E F G$ is

$$
\begin{aligned}
\overrightarrow{E F} \times \overrightarrow{E G} & =2 \mathbf{i} \times(3 \mathbf{i}-\sqrt{ } 3 \mathbf{j}+2 \mathbf{k}) \\
& =-6 \mathbf{j}+2 \sqrt{ } 3 \mathbf{k}
\end{aligned}
$$

As before,

$$
\begin{align*}
4 \times 4 \sqrt{ } 3 \cos \phi & =(3 \mathbf{i}-\sqrt{ } 3 \mathbf{j}+2 \mathbf{k}) \cdot(-6 \mathbf{j}+2 \sqrt{ } 3 \mathbf{k})=10 \sqrt{ } 3 \\
\Rightarrow \cos \phi & =\frac{10 \sqrt{ } 3}{12 \sqrt{ } 3}=\frac{5}{8} \Rightarrow \phi \approx 51 \cdot 32^{\circ} \tag{1}
\end{align*}
$$

(c) Centroid of $\triangle E F G$ is $\left(0,-\frac{2 \sqrt{3}}{3}, 1\right)$
so the equation of the line of the beam from this point is

$$
\begin{equation*}
\frac{x-0}{0}=\frac{y+\frac{2 \sqrt{3}}{3}}{-6}=\frac{z-1}{2 \sqrt{3}}=t \tag{1}
\end{equation*}
$$

This line meets the z-axis when $y=0$, i.e. when $t=-\frac{\sqrt{ } 3}{9}$.
Thus $z=1-2 \sqrt{ } 3 \times \frac{\sqrt{3}}{9}=1-\frac{2}{3}=\frac{1}{3}$. Point is $\left(0,0, \frac{1}{3}\right)$.

